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ABSTRACT
In this work we present a calibration-free system for locat-
ing wireless local area network devices, based on the radio
frequency characteristics of such networks. Calibration pro-
cedures are applied in a great number of proposed location
techniques and are considered to be not practical or a consid-
erable barrier to wider adoption of such methods. Thus, we
addressed issues related to some aspects of location systems
through, an architecture based on wireless sniffers and by
constructing a location model based on signal propagation
models, in which its parameters are calculated in real time.
This guarantee good self-sufficiency and adaptation capacity
to the proposed system, once it does not need human inter-
vention to work, neither from the network administrator or
the wireless user being located. Moreover, a probabilistic
method was used for estimating wireless devices positions,
based on the previous constructed model. We later demon-
strate the feasibility of our approach by reporting results of
field tests in which the proposed technique was implemented
and validated in a real-world indoor environment.
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1. INTRODUCTION
In recent years Wireless Local Area Networks (WLANs)

based on IEEE 802.11 standard [6] (also known as Wi-Fi)
has become a very popular alternative for local area net-
working. It also made user mobility possible, and the pro-
liferation of portable devices, and increasing coverage area
and communication speeds introduced a new application do-
main. The main challenge now, in wireless networks, has
shifted from speed and capacity to services, where context-
aware computing became an emerging paradigm. Context,
as defined in [9], is the knowledge of a user’s location, activ-
ity, or goals that can be used to filter and modify the way
information is presented, its content or even trigger auto-
matic behaviors that benefit the user. The growing interest
in pervasive computing and location-aware systems and ser-
vices provides a strong motivation to develop techniques for
estimating wireless devices positions in both indoor and out-
door environments.

Location by it self is useful, because it gives meaning to
what the users are doing and what their interests are. Lo-
cation Based Services (LBS), applied in the WLAN context,
have been target of recent researches, once it opens perspec-
tives for new applications, adding value to such networks.
On this sort of applications, some service is offered to the
user in a way that an application’s input and output pa-
rameters are directly influenced by the user’s physical posi-
tion. For instance, automatic telephone call forwarding in-
side buildings, non-human tourist guides in museums, guid-
ing costumers to a specific store in a shopping mall or per-
mitting mobile users to print to the nearest available printer.

It is possible to deal with problems related to location
and positioning in many different ways, depending on the
application’s desired accuracy, response time and the sur-
rounding environment. In the present work, we propose a
new system capable of detecting and locating wireless de-
vices, with no human intervention or client side effort of
any kind. We approach the problem of location estimation
by using an architecture based on wireless sniffers in or-
der to measure some radio-frequency (RF) characteristics
of the WLAN signal, such as the Received Signal Strength
Indicator (RSSI). Through this, our goal is to active posi-
tioning accuracy similar to previously proposed RF-based
techniques, using only the existing WLAN infrastructure in
the site where the location system is to be deployed, without
needing any specialized or dedicated hardware.

The main focus of our work was not to bring new radio
signal propagation models for location estimation or new
algorithms such as triangulation. It is rather to propose a



new method to build location models where classical loca-
tion estimate algorithms could be intelligently aggregated
and modified to improve accuracy and diminish cost.

The remainder of this paper is organized as follows. In
Section 2 we survey related work in location estimation tech-
niques. In Section 3 we discuss the variations in RSSI and
the characteristics of the wireless channel. Section 4 defines
two basic architectures for locations systems and describes
the one, applied in our research. Our research methodology
and proposed location estimator is presented in Section 5.
Section 6 brings an experimental setup where our proposed
methodology for location estimation was applied in a real
world WLAN environment. Finally, Section 7 concludes the
paper, highlighting the main contributions of our work and
giving directions for future studies.

2. RELATED WORK
Several location systems based on various technologies

such as infrared (IR) [1, 17], ultrasound [11] and RF sig-
nal [9, 3, 18, 13, 7, 20, 16, 14] have been proposed. Prior
work in the area of location estimation could be classified
into the following categories: (i) the ones that use a special
dedicated infrastructure (specialized hardware) for location
proposes, like the Global Positioning System (GPS) [4] and
(ii) the ones that use properties of an existing communica-
tion network.

GPS is the most widely used location system for out-
door environments, but there are some drawbacks in location
mechanisms of that nature. First, it does not provide good
accuracy inside buildings or in the absence of Line-Of-Site
(LOS) between transmitter (tx) and receiver (rx). Second,
it requires that every WLAN device must be equipped with
dedicated hardware, which increases its cost, weight and
power consumption.

Traditional geometric methods for locating wireless de-
vices are based on angle-of-arrival (AOA), time-of-arrival
(TOA) or time-difference-of-arrival (TDOA). In geometric
approaches the RF signal measurements are transformed
into angle and distance estimates, from which the signal
source location is deduced applying basic geometry and tri-
angulation. While this techniques have been found to give
good results outdoor, they are not so effective when deployed
indoors, because of multipath interference. The need of spe-
cialized hardware and fine-grain time synchronization also
contributes to increase the cost of this solutions.

Another approach that needs special hardware is the IR-
based one. It provides accurate location information but,
suffers from poor scalability due to limited IR range and
high implementation and maintenance cost.

Under the class of location systems that take advantage
of properties of an existing communication infrastructure,
reference [3] introduced an alternative for estimating wire-
less device’s position in a WLAN. In this method, a client
device measures the amount of power it receives from an
Access Point (AP) and uses this information to discover its
own (x, y) location. The estimation process described in [3]
is divided in off-line phase (also called calibration phase or
location fingerprinting) and real-time phase. During the off-
line phase, the signal strength received from several APs are
measured at fixed selected locations forming a grid over the
monitored area. This grid positions and its respective RSSI
values are recorded and stored in a database, resulting in
a radio propagation map. During the real-time phase, the

wireless client measures the RSSI values from all the APs in
range and tries to “match” it with some of the RSSI values
in the propagation map in order to estimate its location. In
[9, 18, 13, 7, 20, 16, 14, 2], the same propagation-map-based
technique was used with different methods for matching the
real-time RSSI measurements with the off-line phase ones.

However, the main problem with map-based techniques is
the calibration effort in the off-line phase, addressed in [2,
15, 5, 8, 10]. The accuracy of such systems depend on this
procedure, that consists of physically move a wireless device
over each radio map grid point and capture RSSI values
from APs. One can consider this kind of procedure to be not
practical or a considerable barrier to wider adoption of such
location methods. In [13] the authors reported a 4 hours
calibration phase, against approximately 9 hours reported
in [18].

While calibration-based efforts present good accuracy re-
sults, there is still room for performance enhancements. Due
to the very dynamic nature of the RF signal, the assumption
that the radio map built in the calibration phase remains
consistent to the measurements performed in the real-time
phase does not hold in practice. This brings the necessity of
rebuilding the radio map from time-to-time. Thus, it seems
more reasonable to really on a fully-automated system, ca-
pable of acknowledging RSSI characteristics and variations
in both spatial and time domains, accounting it in order to
build and rebuild the location model.
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Figure 1: RSSI values measured by a wireless snif-
fer from an AP 10.7 meters away (with LOS), for a
period of 24 hours.

3. WLAN CHANNEL CHARACTERISTICS
The focus of our work is in wireless networks based on

the 802.11 standard, operating over radio frequencies in the
2.4 GHz band. In such wireless communication systems the
radio channel characteristics places fundamental limitations
on its performance. The mechanisms involved in signal prop-
agation can be generally attributed to reflection, diffraction,
and scattering [12]. It is pointed in [2] that in any normal
WLAN environment, changing in furniture placement, sur-
rounding structures and occupancy conditions may seriously
affect signal propagation conditions, as seen in Figure 1. In
this figure, we plot the RSSI measured by a rx (wireless
sniffer, defined in Section 4.2) 10.7 meters away from the
tx (a standard AP), for a period of 24 hours. In this test,
the sniffer extracted RSSI information from beacon pack-



ets transmitted by an AP at a rate of 1 beacon per second.
We observe that from 21:00h to 8:30h, when there was no
movement of people in the office where the experiment took
place, the RSSI varies only 4 dBm, against 16 dBm in busy
hours.

RSSI fluctuations can be explained by two phenomenons
known as large-scale and small-scale fading. The first one is
caused by the separation distance between tx and rx, where
the RSSI decreases as the distance grows. The former is
given by the rapid fluctuations of the RSSI over very short
travel distances or short time durations caused by multipath
in the radio environment. Figure 1 illustrates small-scale
fading where RSSI varies up to 16 dBm over an 1 second
interval. In Section 5 we show how to minimize the effects
of small-scale fading, averaging RSSI over time and using
a large-scale fading propagation model with parameters de-
termined dynamically.

4. WLAN LOCATION ARCHITECTURE
Our interest is in studying architectures for location mech-

anisms that uses an existing WLAN infrastructure. This is
interesting in terms of cost efficiency, once no additional
hardware is needed. With that in mind, we now present
the components involved in the location estimation process.
The nature of this components, their characteristics and the
way they interact with each other is defined here as the
architecture of the location system. There can be two archi-
tecture categories for location engines. The first is based on
the client-server paradigm and is the most used in previous
work. The second one, used only in [8] and in our work, is
based on wireless sniffers.

Figure 2: Client-Server-based architecture.

4.1 Client-Server Architecture
In this architecture, the position estimation process oc-

curs in two steps, off-line and real-time phases, as described
previously in Section 2. Figure 2 shows an example of a
WLAN where a client-server-based location mechanism was
implemented. Wireless clients are associated with one of
the APs but receive signal from other APs in range. A
software installed in the client is responsible for extracting
from the wireless network interface, the RSSI values. Each
wireless client measures the RSSIs from n APs in range and
send the vector (RSSI1, RSSI2, ..., RSSIn) to the location
server. This last one is a software that receives the RSSI

vector from the client and matches it with the radio propa-
gation map stored in the database at the off-line phase.

With the client-server approach, it is possible to enumer-
ate some problems besides the already mentioned calibration
effort. What happens to a LBS that relies upon a location
mechanism based on this architecture, if the user does not
start the application software for any reason? The need
for the wireless client to download, install and run extra
software can also be a concern in a power constrained en-
vironment [15]. Moreover, this architecture can be applied
only to LBSs in which the wireless user is interested in be-
ing located. For security and management applications, a
sniffer-based approach is more suitable, as it will be seen in
the following.

4.2 Sniffer-Based Architecture
Here we define sniffers as softwares that monitor a net-

work interface, capturing all traffic flowing through it. In
our work, sniffers are entities formed by a personal com-
puter (PC), a wireless network interface controller (WNIC)
installed and configured on this PC, and the sniffer software
running in order to capture traffic on this WNIC. An Eth-
ernet NIC is also installed on the sniffer in order to setup
a LAN communication between the different components of
this architecture. Our sniffer software was implemented in
C programming language under Linux, and in order to read
RSSI information from 802.11 frames we had to put the
WNIC in RF monitor mode, where the WNIC works only
as a passive entity, unable to send packets in the wireless
medium and capable of capturing every frame transmitted
in the same channel (and/or adjacent channels) it is oper-
ating in.

Figure 3 shows an example of a WLAN where a sniffer-
based location mechanism was implemented. In this sce-
nario, 3 sniffers monitor the wireless medium and they are
responsible for two main tasks: (1) detecting wireless client
devices and recording RSSI values from it, (2) and mea-
sure RSSI from one or more reference devices in order to
construct the location model. This tasks are executed si-
multaneously and uninterruptedly.

Figure 3: Sniffer-based architecture.

The first one consists in capturing RSSId and MACd

address from the wireless client device with indice d. In
our implementation, the sniffers capture frames for each de-



tected transmitting device during 1 second (Capturing Inter-
val - CI ), taking advantage of high auto-correlation between
consecutive RSSI values in this interval [19]. The average
value RSSId of all RSSIs measured in the CI is computed.
This way, the tuple (RSSI1;d, RSSI2;d, ..., RSSIi;d, ...,
RSSIk;d) will be sent to the database, where RSSIi;d is the
average of RSSI values measured by the i-th sniffer from de-
vice d during the CI, and k is the total number of sniffers in
range of d.

The second sniffer task consists in capturing M beacons
frames [6] sent by the reference access point(s) (APREF ).
The sniffers extract from this frames the corresponding RSSI
values and send the pair (µi;n, σi;n) to the database, where
µi;n and σi;n are respectively the average and standard de-
viation of the M RSSIs measured by the i-th sniffer from
the n-th APREF . This last one, not only plays the part of a
regular 802.11 AP, providing connectivity to wireless clients
and to the LAN infrastructure behind it, but it also works
as a reference for the location model construction. In the
proposed system, the sniffer’s and APREF ’s positions are
fixed and known, and this two components share a 1 : n
relationship, as each sniffer is related with one APREF and
one APREF is related to many sniffers.

When implementing a WLAN, the APs are generally dis-
posed in order to active the largest possible coverage area,
minimizing superpositions. This means that the larger the
area to be covered, the greater the number of APs to be
deployed. In client-server-based location engines, superpo-
sition is needed because wireless clients have to measure
RSSIs from three or more APs to locate itself. This will
increase even more the number of used APs, also increasing
the cost of such network. Moreover, including extra APs in
the network also means opening potential security threats
and backdoors for an attacker. Thus, it is preferable to im-
plement passive devices like sniffers.

The system component responsible for constructing the lo-
cation model and estimating devices positions is the Location
Server. It downloads from the system database all informa-
tion it needs to build the model, like the fixed (x, y) positions
of the sniffers and APREF (s), dimensions of the monitored
local (Xmax, Ymax), the used grid resolution, MAC addresses
from all the devices detected by the sniffers, its RSSIi;d cor-
responding values, and the pair (µi;n, σi;n) so the location
server can build the model. The construction of the model
is described in the following section.

5. LOCATION ESTIMATOR
Before describing the problem of estimating the location of

a WLAN device, it is necessary make some definitions. Let L
be a physical bidimensional space. From each position l ∈ L,
it is possible to have RSSI measured by k sniffers, given a tx

device located at l. In this work we assume L discrete. We
also define a signal space S with k dimensions where each
element of this space is a vector of dimension k in which
its positions represent RSSI readings from the k different
sniffers. Samples from the signal space S are denoted s. This
way, the problem of locating a wireless device given RSSI
measurements can be described as a maximum a posteriori
problem, where, given a RSSI vector s = (s1, s2, ..., sk), we
would like to determine the position l ∈ L, that maximizes
the probability P (l|s). It is possible to say that P (l|s) is the
probability of a tx device to be located at l, given the RSSI
vector s measured by k sniffers.

5.1 Building the Model
After reading the needed information form the database,

the location server uses it to build the radio propagation map
(RPM), in which each grid position l = (x, y) is associated
to a probability distribution P (s|l). For each sniffer i, the
location server will build a RPM in a way that, for k sniffers
a total of k RPMs will be built at the server. The P (si|l)
distribution denotes the probability of a sniffer i to measure
a signal strength si from a tx located at a given position l. To
represent P (s|l), we used a Gaussian distribution (Equation
1) [3, 7, 13, 14, 16, 18, 20]:

P (s|l) =
1

σ(l)

√
2π

exp

„
− (s− µ(l))

2

2σ2
(l)

«
, (1)

where µ(l) is the expected RSSI value measured at the snif-
fer, given a wireless tx located at l and σ(l) is the distribu-
tion’s standard deviation. To estimate µ(l) we used a large-
scale propagation model presented in [12] and also used in
[3], defined here by Equation 2.

µ(l)(d) = µ0(d0)− 10n0log

„
d

d0

«
− α, (2)

But in our work we used this model in a slightly dif-
ferent manner. Here, α represents the total attenuation
caused by obstacles between tx located at l = (x, y) and the

sniffer, d =
p

(|xsniffer − x|)2 + (|ysniffer − y|)2 is the dis-
tance between tx and sniffer, the distance between APREF

located at l0 = (x0, y0) and the sniffer is given by d0 =p
(|xsniffer − x0|)2 + (|ysniffer − y0|)2, n0 is the path loss

component that indicates the rate at which the RSSI de-
creases with the distance and µ0(d0) is given by µ0(d0) =
µi;n and represents the average RSSI value measured by the
i-th sniffer from its pair the n-th APREF . The value σ(l) also
changes with the position l, but here we used σ(l) = σi;n.
The value of µ(l) can be estimated by the propagation model
but, as the value of σ(l) can only be determined by measure-
ments at each location l, we used σ(l) = σi;n as an approxi-
mation.

5.2 Rebuilding the Model
Using the propagation model parameters this way, it is

possible to reconstruct the RPM every time that signifi-
cant variations in the RSSI values occur (i.e. variations
like the reported in Figure 1). We used the RSSI measure-
ments between the pair sniffer/APREF to “sense” whether
the WLAN propagation environment has changed and when
the RPM should be rebuilt.

Assuming that RSSI follows a Gaussian distribution, av-
erage µi,n and standard deviation σi,n can be estimated by
real-time measures between the pair sniffer/APREF . Thus,
it is possible to reconstruct the RPM for each pair snif-
fer APREF every time RSSI values measured by the sniffer
i from the APREF n shows relevant statistical deviations.
For instance, if m in M consecutive RSSI measurements fall
outside the interval (µi,n + σi,n, µi,n − σi,n), a new RPM
should be built. In that case, M more RSSI samples should
be captured in order to recalculate new values for µi,n and
σi,n.

An alternative scheme to reconstruct the RPM is to sim-
ply do it every T seconds. Rebuilding periodically the RPM
despite of alterations in µi,n and σi,n would keep the RPM
constantly up to date so that, in the best case scenario, the
map would be rebuilt even if there is no need to do so, and



µi,n,t and σi,n,t new values would be very close to µi,n,t−T

and σi,n,t−T . Great changes in µi,n,t and σi,n,t would in-
dicate the necessity to rebuild the RPM, and this necessity
would last, in the worst case scenario, T seconds.

5.3 Estimating Device’s Positions
In our proposal, we used some modifications in the meth-

ods presented in [18, 13, 20], in conjunction with our tech-
nique of sampling RSSIs from reference points over time.

As mentioned before, given a vector s = (s1, s2, ..., sk),
we want to find a position l ∈ L that maximizes the proba-
bility P (l|s). Applying Bayes rule, we have P (l|s) given by
Equation 3.

P (l|s) =
P (s|l) · P (l)

P (s)
=

P (s|l) · P (l)X

l′∈L

P (s|l′) · P (l′)
; (3)

where the sum goes through all the possible positions l′ ∈ L
in the RPM grid. P (s|l) is the probability of the sniffers to
receive s from a tx located at l. P (l) is the probability a
priori of finding a tx in the position l. It provides an easy
manner to incorporate to the location system, background
information about mobility pattern and tracking. In other
words, it is possible to suppose that a wireless device is more
likely to be found next to tables and inside offices than inside
bathrooms. P (l) could be used to determine this likelihood.
It could also be determined by some mobility profile and due
to the fact that if a device is in a given location, it is more
likely to find it in adjacent locations before a small period of
time. If the user profile is unknown, a uniform probability
distribution could be used to model P (l).

We estimate P (s|l) for each position l ∈ L, building a
RPM for each sniffer, as described above. Assuming a wire-
less tx located at l, k sniffers will measure a vector s =
(s1, s2, ..., sk), and for each sniffer the probability P (l|si) will
be calculated. If we want to find P (l|s), assuming that RSSI
measurements si are independent, it is possible to write:

P (l|s) = P (l|s1, s2, ..., sk) =

= P (l|s1) · ... · P (l|sk) =

kY
i=1

P (l|si); (4)

where P (l|si) is given by Equation 3.
Equation 4 denotes the probability of a tx device to be

located at l, given that k sniffers observed RSSI values from
this tx, originating the vector s = (s1, s2, ..., sk). Figure 4
shows an example of a proability map where for each grid
point is given a probability P (l|s) calculated by Equation 4.
This figure was generated during a real position estimation
performed by our calibration-free method. The estimator’s
output could be the position l that maximizes the value of
Equation 4. Position l = (0, 9), according to Figure 4, is
the position associated with the highest P (l|s). This output
gave us an error of 0.4 meters for this one estimation exam-
ple. However, this output can be treated in order to improve
accuracy. We used two techniques for outputting the esti-
mated position of the detected wireless device: Estimation
Window and Center of Mass [20].

5.3.1 Estimation Window (W)
While the sniffers measure new RSSI values from the frames

transmitted by wireless devices, the probabilities in each
grid point are recalculated and modified in real-time. Some-
times several different grid points could present similar val-

ues of P (l|s), what could introduce error in the estimation,
as the highest value of P (l|s) could be in a location l far
away from the device’s real position. An example of this
phenomenon can be seen in Figure 5. During our experi-
ments a transmitter (notebook equipped with a WNIC) was
placed at 10 different positions, chosen randomly over the
monitored local. For each of this 10 positions 500 position
estimations were taken by our system. In this experiments
we recalculate the RPM each T seconds. We could see that
cases like the one in Figure 5 (a figure like this was gen-
erated for each estimation) are common but much less fre-
quent than cases like the one in Figure 4. This two figures
were generated between an interval of only 1 second, which
demonstrate the great volatility of the wireless channel and
the capacity of adaptation of our system.
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We notice that in situations where the error is big, the
probability P (l|s) is small, and when this probability is big,
the error is small, as we can see in Figure 6. We can’t say
anything about the error in the case where the probability
is small, but this results motivated the Estimation Window
technique.



The system estimates the position l where P (l|s) has the
greatest value between all other positions in the RPM. This
denotes one estimation. We then compute one system out-
put1 for each W estimations, where W is defined as the es-
timation window size. For instance, for W = 10, 10 estima-
tions are generated. After that, the system checks the value
of P (l|s) for each estimation and outputs the one with the
greater value of P (l|s) between the W = 10. This method
works as a filter and causes impact on the results in two
aspects: increasing response time and accuracy. The first
one is due to the fact that one output would take the time
to generate W estimations, and the second because greater
errors are normally associated with small values of P (l|s)
and consequently filtered, as the system chooses to output
the estimation with the greatest P (l|s) value within the W
consecutive estimations.
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This technique can be described as a discrete estimator,
as it outputs only locations over the grid points in the RPM.
The following technique can be considered a continuous es-
timator, once it can output any coordinate (x, y), for con-
tinuous axis x and y.

5.3.2 Center of Mass (CoM)
The main idea behind this technique is to think of each lo-

cation l as an object in physical space who’s mass is equal to
the normalized probability P (l|s) calculated for each l ∈ L.
For convenience we will make P (l|s) = m. Thus, calling mj

the mass of the location lj , we can define the system output
as a location Z (the center of mass) given by Equation 5:

Z =

NX
j=1

mj · L(j)

NX
j=1

mj

; (5)

where L is a list of all grid points in the RPM ordered in a
descending order according to the normalized probability m,
L(j) is the j-th element of L and N is a system parameter
that indicates the number of locations taken into account

1A system output is defined here as uploading the detected
device’s (x, y) coordinates to the database.

in the center of mass calculations, where 1 ≤ N ≤ ||L||.
Notice that for the particular case where N = 1, the CoM
technique is equivalent to estimation window technique for
W = 1.

6. EXPERIMENTAL EVALUATION
We implemented the proposed location engine in a real-

world indoor environment in order to evaluate and validate
our calibration-free method. In the following we present the
experimental testbed and the overall system performance
results.

6.1 Experimental Testbed
We performed all of our experiments inside our laboratory

on busy hours, during normal working days. The laboratory
has a dimension of 16 meters by 10 meters, allowing a RPM
grid of 160 points, with a grid resolution of 1 meter. The
results presented in this paper were generated using 3 snif-
fers and 1 APREF . The sniffers were implemented in Linux
workstations (i686 kernel 2.6.13.4), where a PCI WNIC was
installed and configured to work in monitor mode along with
our sniffer software. Although code was written to make
sniffers to jump through 802.11 channels, for the sake of sim-
plicity, for generating our results the sniffers kept monitoring
only one channel (the same channel used by the APREF and
the clients used in the experiment). We used a Cisco access
point as the APREF , broadcasting beacon frames at a rate
of one each 100 milliseconds. The wireless client devices
used in the experiments were two Dell Latitude notebooks
equipped with PCMCIA Orinoco and Enterasys WNICs. In
order to constantly generate traffic, so that the sniffers could
extract RSSI information from, we used the comand ping on
the client devices.

In our experiments, we performed a total of 5000 estima-
tions for each output technique variation (W=1, W=10 e
CoM), while the client devices were positioned at 10 differ-
ent positions (500 estimations each) randomly chosen. Ta-
ble 1 brings a summary of the system parameter values used
during the experiments.

Table 1: Parameters used in the experiments to gen-
erate the presented results.

Parameter Value

α 0

n0 2

T 10 seconds

Grid Resolution 1 meter

(Xmax, Ymax) (16m, 10m)

M 60 beacons

N 5

CI 1 second

P (l) Uniform

6.2 Obtained Results
In order to evaluate the proposed system’s accuracy, we

define the metric location estimation error, which is the one
normally used in previous work. This error is the distance
(in meters) from the point (x,y) indicated by the system
output, to the real position of the wireless client device.

Figure 7 shows the ECDF (Empirical Cumulative Distri-
bution Function) of the error in location estimation for each
output technique discussed in the previous sections. The



stair behavior observed in the curves for W=1 and W=10,
differs from the smoother behavior presented by CoM. This
happens due to the fact that the first two ones are variations
of a discrete estimator, and our error metric can assume 160
different values, consequence of 160 different (x,y) pairs that
the estimator can output. CoM is a continuous estimator
and the error can assume an infinity of values.
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Figure 7: Empirical cumulative distribution of the
error in location estimation, for each technique used
in the estimator’s output.

We can notice an improvement in accuracy of approxi-
mately 11% on the average, when using W=10 instead of
W=1, and an even better performance on the average when
using CoM instead of W=1, with a gain of approximately
18%. Estimation erro results are summarized in Table 2.

Table 2: The 50th, 75th and 90th percentile values
for the error distance (reported in meters), for each
technique used in the estimator’s output.

Technique 50th 75th 90th Mean Error

W = 1 2.00 2.83 4.00 2.07
W = 10 1.61 2.72 3.61 1.84
CoM 1.23 1.95 3.82 1.70

Figure 8, gives the location error occurrence for the three
used output techniques. Notice that for errors less than or
equal to 1 meter, W=10 has some advantage with 37% of
the estimation erros under this threshold, against 20% when
using CoM. However, 77% of the estimations presented an
error inferior or equal to 2 meters when using CoM, against
54% when W=10 is used. For 77% of the estimations when
W=10 is used, the presented error is less than or equal to
2.83 meters.

7. CONCLUSIONS AND FUTURE WORK
Our main objective was to propose a calibration-free, au-

tomated, RF-based method for estimating the location of
WLAN devices with no need of specialized extra hardware,
that does not demand software to be installed in wireless
clients and that is equivalent, in terms of accuracy, to other
published work in WLAN location estimation. We man-
aged to accomplish this by using a large-scale propagation
model, in which its parameters are dynamically determined

over time, through RSSI measurements between the pairs
sniffer/APREF .

Before setting up our experimental testbed, we did not
perform any study to determine the best sniffers or APs
placement in order to improve accuracy. The sniffers were
implemented in workstations previously deployed in the lab-
oratory, without moving any equipment around. The idea
behind it was to show that we could accomplish good loca-
tion accuracy results using an already deployed network in-
frastructure (wired and/or wireless), without changing any
aspect of the network users routine (new software to install,
new work to be done like in calibration phase or new work-
stations placement), and without increasing implementation
costs. We searched for a complete transparent, inexpensive,
off-the-shelf solution for the network user/administrator. It
is part of our ongoing work to determine the impact of snif-
fers and/or APREF positions in the accuracy of our method.
The impact of the number of devices (sniffers and APREF )
used to assist location determination is also under investi-
gation.
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Figure 8: Normalized histogram of the error in lo-
cation estimation, for each technique used in the
estimator’s output.

In our experiments, we used Equation 2 to estimate the
average of P (s|l) distribution, but we did not took into con-
sideration the parameter α. Here we consider α = 0. We
could use different values of this parameter to tune the prop-
agation model and approximate it even more to the reality
of WLAN channels and improve our method accuracy. This
is part of an ongoing research. A study of the impact of
using different propagation models in location accuracy, like
Ray-Trace [12] for instance, is also in progress. Moreover,
we now want to determinate the optimum number M of bea-
con packets to be captured by the sniffers and the rate at
which they are generated by the APREF , in order to provide
more accurate location estimation. The same is to be done
for the time T between RPM rebuilding. An investigation
on how this and other system parameters would influence
accuracy and determining adequate values for it, would be
an interesting problem.
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