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Abstract—The Internet of Things (IoT) is paving the way for
the development of Cyber-Physical Systems (CPS), the next step
of the Internet evolution, which will allow the development of
several new systems and applications. Likewise, urged by the
adoption of 5G and Beyond networks, the massive, ubiquitous
spread of interconnected IoT devices has increasingly exposed
the vulnerability of data and related applications in an unprece-
dented way. If the security of any component in such systems
gets compromised, affecting its trust with respect to others,
an associated data leak may cause serious threats to privacy,
material losses, and even put people’s lives at risk. In this paper,
we present IoT devices’ traffic characterization to provide trust
values to enable secure communications among such devices. We
develop experiments using a real IoT dataset to demonstrate
the feasibility and the effectiveness of our proposal. Considering
that complementary features between blockchain technology and
information theory triggers a great potential for research and
innovation, the key idea of the contribution consists in modeling
trust using a two-level approach, which is based on a distributed-
ledger (at the high level), and a relative entropy measure (at the
low level). The results show the feasibility of our approach.

Index Terms—blockchain, entropy, IoT, security, trust

I. INTRODUCTION

As emergent paradigms for networks evolution, the fifth
network generation (5G) [1], and the Internet of Things (IoT)
[2] expand the network communication horizons to provide
any type of smart object (things) with ultra-reliable low-
latency communication (URLLC). A plethora of benefits can
be obtained with the growing adoption of IoT, for instance, in
the areas of smart cities, healthcare, intelligent transportation
systems, Industrial IoT, and many others based on IoT devices
[3]. Particularly, IoT enables a noteworthy data acquisition
within the ecosystems previously mentioned, which can afford
improvements for various decision-making processes.

In this context, it is of a paramount importance to provide
IoT systems with security. Indeed, a security breach can lead to
a data leak that may cause serious privacy threats, bring about
material losses, and even jeopardize people’s lives. Therefore,
new requirements and challenges need to be considered in the
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design and development of IoT systems and applications [4],
especially in terms of security.

In this paper, we consider our trust model presented in
[5]–[7] to provide additional analysis using an IoT traffic
characterization to clarify how our approach works and verify
the feasibility and effectiveness of the proposed approach
with experiments using a real IoT dataset [8]. Such dataset
is composed of several raw packets which include flow in-
formation for each pair of devices (source and destination)
with traffic from both licit and malicious devices included.
The data consists of IoT devices traces including cameras,
smart lights, activity sensors, and health monitors, with some
of them presenting abnormal behaviors.

The key contribution of the proposed trust model consists
in combining both characteristics of Low Level (network per-
spective) using the relative entropy of the incoming traffic of
an IoT device, and High Level (application perspective) with
a distributed-ledger-based approach (blockchain), to compose
a comprehensive trust metric, capable of capturing changes
in the behavior of devices and isolating those who present
unexpected misbehavior.

The rest of this paper is organized as follows. In Section II
we describe the problem addressed in this paper and discourse
about related works. Section III presents the trust components
and our trust model. In Section IV the experimental analysis
and result discussion are presented. Finally, Section V con-
cludes the paper and foresees future work.

II. PROBLEM STATEMENT AND RELATED WORK

Security aspects is admittedly a major challenge in IoT
[9]–[16], due to the heterogeneity between the multitude of
components and platforms IoT interconnects, the resource-
constrained devices, and the wireless communication tech-
nologies, which are inherently more vulnerable. In particular,
the problem of assigning trust metrics to IoT devices is of
prime importance and is still considered a challenge [17], [18].
Thus, this work aims to explore IoT trust-building solutions
and propose an approach that ensures the trustworthiness of
devices throughout their communication [19].

To build trust among entities, many works in the literature
propose approaches based on Blockchain (BC). Authors in
[20] present an in-depth survey about the integration of BC



and IoT, discuss the insights of this new paradigm, and explore
an integrated architecture called Blockchain of Things and its
application possibilities among many domains, e. g., supply
chain, health care, internet of vehicles, among others. Fortino
et al. [21], [22] designed a framework in which every IoT
device is associated with a software agent capable to exploit its
social attitudes to cooperate as well as to form complex agent
social structures. The authors consider the reputation aspect
by using a BC implementation and devices can use network
services according to their reputation provided by BC.

Authors in [23] focus on fog computing level to offer a
bi-directional trust management system for secure offloading
and fog-to-fog collaboration, allowing a service requester to
determine the trustworthiness of a service provider and vice-
versa before initiating a connection. They use fuzzy logic to
aggregate trust obtained using quality of service, quality of
security, social relationships, and past reputation metrics.

Hongjun et al. [24] use Information Theory to build trust
among devices. They represent the relationships with a direc-
tional graph and compute the entropy of the capability of a
device in performing an action. This way, they can detect ma-
licious devices in the network. We also consider Information
Theory in our work, but with a different perspective focusing
on the network level instead of the application level.

In [25], authors present a survey on trustworthiness and
dependability in IoT systems and propose a framework to
provide trustworthiness at the data level for mist and fog-based
IoT systems. Their framework provides data trustworthiness to
ensure a continuous and uninterrupted operation of IoT data
flow. They also discuss challenges and trade-offs related to
data trustworthiness in IoT and present data flow proposals
for four different possible stages according to their framework,
namely, thing, mist, fog, and cloud stage.

The aforementioned works emphasize the importance and
relevance of building trust-based approaches to provide secu-
rity in the communication among IoT devices. Nevertheless,
the reviewed works did not present any multiple perspective
solution in terms of considering not only the application level,
but also the network level. Such approach is important in order
to provide a comprehensive trust solution that can gather more
aspects into consideration when building a trust metric than
with just one-perspective approach. Therefore, in this paper,
besides presenting a trust model that combines Blockchain and
Information Theory techniques, the key contribution of our
work is the double perspective of both application level and
network level. Hence, we can provide a more comprehensive
trust metric that can deal with the particularities of IoT devices
traffic patterns and the specificities of applications.

III. TRUST MODEL

To model trust for IoT, we need to know which information
is necessary to compose a trust metric. According to the
model proposed in [6], a receiver IoT device needs to build
an initial trust to enable communication, since it does not
know the sender IoT device previously. Given the initial trust,
the receiver should dynamically adjust its trust in the sender

Fig. 1. Scenario of our two-level trust approach

accordingly to the network behavior of the sender (more trust
if the behavior is as estimated, less trust otherwise). Then, the
trust value should not last endlessly, but instead, be decreased
over time, given that, after the last contact, the receiver does
not know if the sender was compromised or if it presents any
unexpected (potentially malicious) behavior.

An illustration of how the proposal works can be seen
in Figure 1. Initially, in the illustrated scenario, two entities
(Alice and Bob) do not know each other, having little or
no information needed to infer an initial trust value to start
communicating. The operating steps are as follows:

• Step 1: Each IoT device queries the other’s identity in a
Blockchain infrastructure that stores the identities of all
devices, which is in the High Level of our approach;

• Step 2: Once a minimum initial trust is established, the
communication can normally start over the Internet, either
through a Thing Tier to Cloud Tier communication, or a
Thing Tier to Edge Tier communication;

• Step 3: As the communication between Alice and Bob
happens, the Low Level takes place. Alice calculates the
relative entropy of Bob’s traffic (and vice versa) and
uses this information to adjust the value of trust in Bob
over time. If Bob starts behaving abnormally1, this will
negatively affect trust and may cause communication to
terminate if it decreases beyond a previously established
threshold. If the communication is over, a temporal com-
ponent reduces the trust value until it reaches the point
where Alice and Bob will have to query the Blockchain
again and restart the whole process.

We consider an IoT system composed of three tiers, namely,
the Things tier, the Cloud tier and an intermediate Edge tier
[26] as Figure 1 depicts. Such an organization is driven by the
recent paradigm of Edge Computing [27], [28], which aims to
move computing, processing, and storage resources to the edge
of the network, rather than centralizing them in remote cloud
data centers. With such approach, an infrastructure is created
that provides lower latency for applications, as compared to
the cloud. Edge devices can range from switches, routers, or

1In our case, an abnormal behavior means any traffic pattern that diverges
from the estimated traffic distribution



base stations to smart gateways or micro data centers and they
usually have more limited resources than cloud devices, but
possess far more capabilities than IoT devices.

Considering stationarity, let Xji represent the data rate
(in Bytes per second – Bps) that a device j receives from
a device i. If the traffic generated by a device is below
the capacity of the data link connecting that device to the
network, then the traffic is equal to the throughput. Xji is
considered to be a random variable that can assume values
in the sample space Sji = [0,∆, 2∆, 3∆, ..., Rmax

ji ], where ∆
is a positive integer and Rmax

ji is the maximum received data
rate. Hence, the distribution of Xji is given by P [Xji = x] ≜
pXji

(x), x ∈ Sji.
Assume TRji as the trust of device j in device i, defined in

the interval [0, 1]. The TRji is initially defined based on the
reputation of the device stored in the Blockchain. This compo-
nent gives a trust value based on the number of confirmations a
transaction has on the Blockchain. Then, with the communica-
tion allowed to start, TRji turns to be influenced by the inverse
of the relative entropy of the traffic, which changes when the
current traffic behavior of the device deviates from the esti-
mated traffic behavior due to any type of anomalous condition.
From [29], the entropy of the random variable Xji, H(Xji), is
defined as H(Xji) = −

∑
x∈S pXji

(x) log pXji
(x). In the

same way as Xji, we define the random variable Yji, which
represents the observed incoming throughput flowing into a
device j generated by a device i. As for the random variable
Xji, Yji also assumes values in the set S, in accordance with
the distribution qY (y) ≜ Pr[ Y = y] , y ∈ S . Then, the
relative entropy is calculated according to Equation 1 using
the Kullback-Leibler [30] divergence, a type of “distance”
between two distributions.

D(p||q) =
∑
x∈S

pXji(x) log
pXji

(x)

qYji
(x)

(1)

Therefore, pXji
(x) is the estimated distribution of the

incoming throughput (or traffic) from the sender i to the
receiver j. The qYji

(x) is also the distribution of the respec-
tive throughput, but actually observed. As qYji

(x) approxi-
mates pXji(x) in Equation 1, the relative entropy (“distance”)
D(p||q) decreases. So, we model traffic behavior when the
actually observed distribution differs from the true (estimated)
distribution, and adjust the trust of a specific device according
to the following strategy:

• If the obtained divergence value D(p||q) is less than 1,
then the calculated trust value follows the formula:

C2 = 1.0−D(p||q)

• For divergence values D(p||q) greater than 1, the calcu-
lated trust value follows the formula:

C2 = −0.5 +

(
1

D(p||q)

)
Finally, TRji is influenced by a temporal component to

deal with the usual dynamism of IoT devices and their op-
portunistic interactions. This component works like a timeout

by decreasing the trust value from the moment devices stop
communicating until they reach a threshold. When trust value
falls below the threshold, devices will need to return to the first
case of trust establishment, i.e., devices will need to obtain
a minimum trust from Blockchain again. In our model we
consider a proportional temporal decay.

IV. EXPERIMENTAL ANALYSIS AND DISCUSSION

In this section, we evaluate the potential of our approach on
translating the network traffic behavior of IoT devices into a
meaningful trust metric. We perform experiments using both
real and synthetic datasets, considering boundary behaviors to
test the effectiveness of our approach. It is worth mentioning
that we are not simulating the trust metric, but we are actually
calculating it in a realistic scenario since we are using real data
obtained from a real IoT dataset. All dynamism that is typical
of such a context is reflected in traffic traces. For example,
the connectivity disruption due to mobility causes zero traffic
to be received by a device.

Results presented in this section use the dataset found in [8].
Traffic traces from a smart-campus environment compose this
dataset with over 20 IoT devices, including cameras, smart
lights, activity sensors, and health monitors. These traces
include raw packets (pcap) and flow information over a period
of 3 weeks. In our experiments, we considered a period of
one day of the dataset and extracted the traffic in bytes/s from
flows of each pair of devices according to the tuple (Source IP,
Destination IP) by summing the number of bytes transmitted
in one second. In this way, we have a ratio of one sample per
second.

Figure 2 depicts the original traffic history over time an IoT
device i sent to device j. We also considered a compromised
version of the same traffic sample with an anomalous traffic
(50 KBytes/s) insertion from the instant 13000 sec to 17300
sec (Figure 3). We use this compromised version of the
traffic to analyze the behavior of our approach under such
anomalous circumstances, which may characterize malicious
traffic behavior.

We run experiments considering the traffic between any two
devices identified inside the dataset through their respective
flows. The experiment consists in playing the traffic values
obtained from the dataset within the interval of measurement
for each pair of devices. There are some relevant assumptions
regarding the implementation to be highlighted:

• Taking into account the typical resource constraints of
IoT devices, the results were obtained considering a
sliding window size of 600, which contains the traffic
values used in the traffic distribution estimation. This is to
assess how the tiny sliding window performs to embrace
devices that are only capable of processing at most such
a window size;

• For the sample distribution of traffic we consider a fixed
amount of bins (10) and a fixed maximum value of traffic
(100 KBytes/s);

• The value for the estimated traffic, used to compare with
the value for the actually received traffic, is calculated



using a Kalman Filter, since it closely tracks the received
traffic and does not require a lot of resources;

• When the communication is established for the first
time between two devices, only the component at the
High Level (application-based) actuates, obtaining the
reputation of the device in the community;

• When there is traffic (i.e., the incoming throughput is
greater than zero and less than the transmission capacity),
only the Low Level components (network-based) actuate
to change the trust value;

• When there is no traffic (i.e., the incoming throughput
is zero), only the temporal component (also at the Low
Level) actuates by constantly decreasing the trust value
according to a predefined rate (e.g. −0.1 trust/s);

• We consider a threshold of 0.9 as a minimum trust
value necessary for a device to communicate with another
device. This means that a device with trust below the
related threshold is not allowed to communicate.

A. Analysis of the proposal

For the following results, we observe the impact of using
network characteristics and application-level information to
compute the trust metric. Primarily, all available samples of
one day were used, namely 21600 samples, which corresponds
approximately to a 6-hour collection period. Then, we analyze
an interval of the samples to provide an analysis closer to what
an IoT device could perform (given its resource constraints).

We analyze the distribution of the samples through the
following histograms, in which the x-axis corresponds to the
amount of incoming traffic in an IoT device in bytes/s, and
the y-axis corresponds to the relative frequency observed ac-
cording to the specified number of samples. The x-axis varies
between the minimum and maximum values found within the
sample range considered in each case. It was considered 10
bins, i. e., 10 intervals of the same length that section the x-
axis in 10 equal parts. We also provide the goodness of fit

Fig. 2. Traffic produced by an IoT device using the day 2016-09-28 of the
dataset from [8]

Fig. 3. Modified traffic produced by an IoT device using the day 2016-09-28
of the dataset from [8]

Fig. 4. Histogram of all samples of the original trace

of distribution taking into account a Wakeby distribution to
approximate the sample distribution of traffic.

In the plots in Figures 4 and 5, all available samples were
used to calculate the relative frequencies. Most of the traffic
values are relatively low or zero, although we have values with
a high flow rate as well. Comparing Figure 4 with Figure 5,
we can observe the insertion of anomalous values in the trace
under analysis through the relative frequency increase close to
the interval of 50 KBytes/s.

Since IoT devices are meant to use a sliding window to
compute trust, by analyzing a smaller range of samples within
the trace, we can observe the anomalous behavior does not
appear until the moment in which it occurs is reached. In
Figure 6, the range considered is that of the first 1000 samples
and the anomaly does not appear. Conversely, considering the
interval between 15500 and 16500 of the samples (Figure 7),
the histograms have significantly changed.

To observe the change in the goodness of fit of the Wakeby



Fig. 5. Histogram of all samples of the modified trace

Fig. 6. Histogram of the range between 1 and 1000 of the samples

distribution on the sample data we compute the Kolmogorov-
Smirnov (K-S) statistic, which presents 0.413 for the original
trace and 0.362 for the modified trace. For the smaller range
in which the anomalous traffic behavior occurs, it is noticeable
that the Wakeby distribution does not fit well (Figure 7), with
a K-S statistic 0.330, which means that the parameters of the
distribution have changed. Bearing this in mind, the device
receiving the traffic can calculate the distance between the
sample distribution of the observed data and the estimated
distribution (of which traffic follows a Wakeby) previously
learned. This distance is given by calculating the relative
entropy, also known as Kullback-Leibler divergence, which
we discussed in Section III.

Figure 8 depicts the results of trust values calculated for the
original trace. The trust increases as soon as the traffic pattern
begins to stabilize and varies according to traffic behavior.
Then, it shows a trust stabilization from around the 7000
sec to the end of the trace. In Figure 9 though, when the

Fig. 7. Histogram of a range between 15500 and 16500 of the samples

Fig. 8. Trust values obtained with our trust model using the traffic from the
dataset [8]

inserted anomalous behavior is reached (at 13000 sec), the
trust value begins to change its pattern. During this period,
as the trust values are below the established threshold (0.9),
the device is not allowed to communicate. In this case, it
has to rely on its reputation, which is provided by the High
Level component. Then, as the modified period passes, trust
values start to increase again. These changes are produced
by the variations on traffic distribution over time, captured
by the relative entropy and temporal components (the Low
Level of our proposal), which could not be perceived from an
application-level perspective.

Given these results, our approach can capture changes in the
traffic patterns of the devices, which helps to compose a trust
metric. Therefore, the approach prevents malicious devices
from successfully communicating with other devices on the
network.



Fig. 9. Trust values obtained with our trust model using the modified version
of the traffic from the dataset [8]

V. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we present an analytical model for trust in
the context of IoT. We gather characteristics of Low Level
(network perspective) and High Level (application perspective)
to compound a meaningful trust metric capable of capturing
network traffic behavior changes. The results obtained using
real and modified traffic traces show that our approach behaves
according to the expectations, including in extreme behaviors
caused by spikes purposely inserted into the real dataset.
Therefore, we show the effectiveness of our approach in
capturing network behavior changes, adjusting trust according
to that, and protecting the licit devices from malicious ones.

For future work, we plan the model extension considering
Artificial Intelligence aspects to improve the learning of new
traffic behaviors IoT devices might present. We also envision a
real deployment considering devices virtualization with digital
twins in a Multi-access Edge Computing context, and a real
blockchain implementation to provide efficiency metrics and
results from a real deployment.
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of malicious devices in siot,” Tehnički glasnik, vol. 15, no. 1, pp. 43–50,
2021.

[15] H. Aldowah, S. Ul Rehman, and I. Umar, “Trust in IoT Systems: A
Vision on the Current Issues, Challenges, and Recommended Solutions,”
in Advances on Smart and Soft Computing, F. Saeed, T. Al-Hadhrami,
F. Mohammed, and E. Mohammed, Eds. Singapore: Springer Singa-
pore, 2021, pp. 329–339.

[16] Z. Fang, H. Fu, T. Gu, Z. Qian, T. Jaeger, P. Hu, and P. Mohapatra,
“A model checking-based security analysis framework for iot systems,”
High-Confidence Computing, vol. 1, no. 1, p. 100004, 2021.

[17] E. L. C. Macedo, E. A. R. de Oliveira, F. H. Silva, R. R. Mello, F. M. G.
França, F. C. Delicato, J. F. de Rezende, and L. F. M. de Moraes, “On the
security aspects of Internet of Things: A systematic literature review,”
Journal of Comm. and Networks, vol. 21, no. 5, pp. 444–457, 2019.

[18] G. Fortino, L. Fotia, F. Messina, D. Rosaci, and G. M. L. Sarné, “Trust
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