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Abstract—As the protocol that enables the global routing
system of the Internet, Border Gateway Protocol (BGP) is
increasingly becoming a multipurpose protocol. However, it keeps
suffering from security issues regarding bogus announcements for
malicious goals. Some of these security breaches are especially
critical for distributed intrusion detection systems that use BGP
as the underlay network for interchanging alarms. In this sense,
assessing the confidence level of detection alarms transported
via BGP messages is critical to prevent internal attacks. Most
of the proposals addressing the confidence level of detection
alarms rely on complex and time-consuming mechanisms that
can also be a potential target for further attacks. In this paper,
we propose an out-of-band system based on machine learning to
infer the confidence level of the intrusion alarms sent using BGP
headers. Tests using a synthetic data set containing the indirect
effects of a widespread worm attack over the BGP network show
promising results considering well-known performance metrics,
such as recall, accuracy, receiver operating characteristics (ROC),
and f1-score.

Index Terms—DIDS, Machine Learning, BGP, Distributed
Intrusion Detection System

I. INTRODUCTION

The essential function of BGP is to control how IP packets
are routed across the Internet through exchanging routing
and reachability information between autonomous systems
(AS). New prefixes announced by an AS to its AS-peers
continuously propagate around the Internet. The role of BGP
as “the glue of the Internet” also keeps pushing its evolution
along the time to support other routing protocols in the
case of MP-BGP and new features such as BGP-FlowSpec.
However, despite the several improvements of BGP since its
worldwide implementation, it is still extremely vulnerable to
both malicious attacks and human error [1]. Thus, besides
its importance to assure confident reachability, assessing the
confidence level of these messages also helps to improve self-
defense mechanisms of distributed intrusion detection systems
that use BGP as their underlying network [2].

Although the myriad of approaches addressing security
issues on the BGP protocol framework, resource public key
infrastructure (RPKI) [3] has prevailed as the de facto ap-
proach. The distributed public database of RPKI is considered
to be a highly secure and reliable mechanism, but one cannot
guarantee its accuracy [4]. Actually, RPKI grounds full-scale
architectures that provide origin and topology authentication,
such as route origin validation (ROV), which uses route origin
authorizations (ROAs) – digitally signed objects that fix an IP
address to a specific network or autonomous system – to es-

tablish the list of prefixes a network is authorized to announce.
However, RPKI still needs a third-party certification in spite
of its remarkable reliability. In addition, implementing RPKI
on the entire Internet is far from a simple task. According to
the analysis proposed in [5], small ASs have not considered
performing the origin validation at the time of this writing. At
this point, it is worth reminding that the security of a chain
system is only as strong as its weakest link.

Another important feature of BGP is the BGP-FlowSpec [6]
that provides an extension to distribute granular flow specifi-
cations to network routers. Although BGP-FlowSpec already
implements validation mechanisms, it is still possible for a
malicious or compromised AS to announce fake FlowSpec
updates [7]. Furthermore, due to the presumed numerous
detection members distributed across the Internet, it would be
difficult to infer the reliability of the BGP-FlowSpec messages
originating from a given federation. To this end, using machine
learning (ML) capabilities to support defense decisions is a
good option.

In this paper, we propose an ML model to infer the confi-
dence level (CL) of BGP-based alarms that arrive at a given AS
to be combined, according to the intrusion detection federation
described in [2]. The ML model uses a 15-attributes data
set built from mandatory fields of each BGP header to yield
0 ≤ CL ≥ 1, which indicates how reliable the BGP message
is. This confidence level can be combined with the mean
positive-prediction value (PPV) of the detection federation
to support defense decisions. Results based on some well-
known performance metrics such as recall, accuracy, receiver
operating characteristics (ROC), and f1-score, show that the
model is able to perform well for new input data.

The remainder of this paper is organized as follows. In
Section II, we position our approach in relation to the main
works related to improving the BGP security framework. In
Section III we explain the process adopted to build the data set
used to train the machine learning model. Section IV describes
the unsupervised and supervised tests using the data set built
in III and present some relevant performance results obtained
from that. In Section V, we close the article with an objective
analysis correlating the results obtained from the models with
the paper’s contributions.

II. RELATED WORKS

Network topology changes provoked by the effects of some
kind of attack have been very well studied in academia [8].
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The survey proposed in [9] presents a comprehensive approach
regarding BGP anomalies, including a canonical taxonomy
classifying them according to their intentionality and causality.
The study in [9] relates some of the most important global
worm attacks such as Nimda and Code Red II with large spikes
of BGP messages observed during these attacks. Another
global worm attack that provoked a dramatic increase in BGP
update announcements – 100 times bigger in the case of some
ASs – was Slammer. In all these cases, even though the
attacks do not intend to directly compromise the BGP network,
their effects certainly did. Taking advantage of this unnatural
behavior, several works have been proposed BGP labeled data
sets to train machine learning models aiming to detect – and
sometimes classify – attacks. The labeled data set proposed
in [10] has 35 features distributed as direct, indirect, volume,
and statistical. To label their data set, P. Fonseca et al. [10]
correlated information from some global events that affected
Internet traffic, such as worldwide worm attacks, the 2005
Moscow blackouts, the 2011 earthquake in Japan, the 2015
AWS route leak, with BGP historical logs from Ripe Project.
Performance tests using new data show promising results to
detect and classify the anomalies between attacks and events.
In the same track, the approach proposed in [11] relies on
data mining models to detect abnormal behaviors on the global
routing infrastructure, by learning from a labeled 15-features
data set. According to the authors, abnormal events such as
large-scale power outages, and worm attacks can affect the
global routing infrastructure and consequently create regional
or global Internet service interruptions. Graphical results show
that the system is able to yield accurate classification in near
real-time.

An autonomous system (AS) deals with an enormous num-
ber of BGP updates every day. These update messages aim
to inform the AS route on how to reach a new prefix on the
Internet or delete it from its routing table. In such a large
amount of data, it is common to observe mistaken messages
containing incorrect information as a result of misconfigured
ASs or even fake messages originated by malicious attempts
that can seriously damage Internet routing. The detector
proposed in [12] relies on machine learning techniques to
reproduce the “gut feeling” of a network expert to classify
BGP updates as either attacks or misconfigured messages.
The idea is to train auto-encoders to generate only clean
data as opposed to attack data, which does not share the
same essential features. However, due to the difficulties in
obtaining a real data set containing collections of anomalous
BGP announcements, the authors crafted their own attack data
by editing random updates. The tests using the f-score as the
main performance metric, which is a measure of the model’s
accuracy, show promising results.

The system proposed in [13] requires no protocol modifica-
tions and utilizes existing monitoring infrastructure to infer the
consistency of the BGP announcements according to the net-
work topology. Utilizing geographical location data from the
“whois” database and the topological information, the system
builds an AS connectivity graph, classifying all autonomous

system nodes as either core or periphery nodes. Violations are
detected by checking if the sequence of autonomous systems
satisfies the constraints dictated by their observations regarding
the AS PATH attribute of update messages. Although the
proposed system can be applied immediately and does not
interfere with the existing infrastructure, it presents topological
restrictions that permit some attacks to succeed.

The work presented in [14] reveals that malicious activity is
not necessarily evenly distributed across the Internet. Rather,
the model based on applying Jaccard similarity shows that
there are ASs solely engaged in malicious activity. For exam-
ple, while a majority of ASs have little to no malicious activity,
a few ASs have as much as 0.5 → 10% of their IP addresses
engaged in malicious activities. Another relevant result refers
to the number of changes in BGP connections: ASs harboring
malicious behavior have a greater number of connectivity
changes than ASs not involved in malicious activities, and
these changes involve more of their peers.

Considering specifically the distributed intrusion detection
system (DIDS) environment, trusting warning messages ac-
cording to their source’s reputation or skill is a critical secu-
rity point to prevent internal attacks. The intrusion detection
network proposed in [15] infers the trustworthiness of each
distributed peer based on its performance to solve internal
puzzles. The more successful a node is in solving security
puzzles, the more reliable it is considered to the rest of the
intrusion network. In the same sense, the more reliable a node
is according to its network’s point of view, the higher priority
it has to challenge others. In our previous work [2], each
federated IDS traversed by a suspicious flow that detects it as
an intrusion uses the BGP-FlowSpec framework to cooperate
with the distributed detection platform by announcing a possi-
ble ongoing attack. For a destination target that receives these
BGP-based alarms from a distant AS, knowing how much it
can trust this information before making security decisions is
imperative. In this case, the consensus-based approach of the
distributed system imposes a message-by-message analysis,
instead of extracting volumetric attributes from the row data
of BGP update messages. The main contribution of this paper
is to show that it is possible to infer the confidence level of
each BGP update message individually, based solely on its
mandatory header information.

III. DATA SET DESCRIPTION

Building a labeled dataset demands either customizing an
open Internet-available data set related to the objectives at
hand or using a specific data set reproducing the same sce-
nario [16]. Thinking on that, we propose building a data set
containing strategic features, extracted individually from the
path attributes of each BGP update message. This data set is
used to teach a regression-based machine learning model to
infer the confidence level of each BGP update message (CLi

)
based on its mandatory header information. Combining the
positive-prediction value PPVi that measures the precision of
the IDSi, with CLi evaluated from the BGPi header, we con-
solidate the confidence mass (MCi ) of the intrusion evidence

2023 7th Cyber Security in Networking Conference (CSNet)

158
Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Downloaded on April 03,2024 at 21:09:08 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1: Process of consolidating the confidence mass MCi of
the intrusion evidence, by combining PPVi and the confidence
level CLi

evaluated by the machine learning model.

i [2]. In other words, besides solely using the fickle positive-
prediction value of each federated IDS member (PPVi), the
idea is to combine the two data inputs, as depicted in Figure 1.

To the best of our knowledge, we still do not have any DIDS
data set based on FlowSpec messages. Therefore, we consider
a global worm attack named Code Red II occurred in July
19th 2001 between 10am and 8pm GMT, as our reference. In
that time, Code Red II imposed a worldwide impact on the
BGP network, triggering message spikes on the RIPE NCC
routing collector RRC04 coming from ASs 513, 559, and
6893 peers during the active attack interval [10]. In order to
have a comprehensive view regarding the attack occurrence,
we collected raw BGP data in three different time intervals:
before the attack (2001-07-12), during the attack, and after the
attack (2001-07-26).

A. Direct Features

The direct feature is the data set attribute extracted from the
input data and used in the machine learning model as it is.

1) Origin: It is directly extracted from the ORIGIN code,
which is a mandatory attribute whose values define the origin
of the Network Layer Reachability Information field (NLRI)
according to its learning process. It can take three different
values: i (IGP), e (EGP), or ? (incomplete). Normally, the
ORIGIN code plays a secondary role in the BGP route
selection algorithm as the fourth decision criterion. However,
according to the analysis presented in [17], there are some
vulnerabilities related to bogus ORIGIN code.

2) ASN Repetitions: Reflects the number of ASN repe-
titions in the AS PATH. It is generally related to the AS
prepending (ASPP) mechanism to manipulate the route choice
for the AS destination. The ASPP is largely used as a traffic
engineering tool to control the usage of input links by adding
the local Autonomous System Number (ASN) multiple times
in the AS-PATH, making it longer and thus less likely to
be chosen by other ASs. Although ASPP is beneficial for
traffic engineering, it can compromise the security of Internet
routing. More precisely, ASPP use can increase the risk of
prefix interception attacks or trigger DoS attacks.

3) AS PATH Length: Refers to the number of non-
repeating ASNs in the AS PATH LENGTH field. Recent
works as in [18] shown that the most traffic on the Internet
crosses up to 5 ASs before arriving at its destination AS.

Thus, announcements from distant ASs are less common and,
therefore, less reliable.

B. Indirect Features
Indirect features are the ones obtained from the information

present in the input data, requiring some further processing to
become data set attributes.

1) Betweenness of the Originator-AS: The betweenness or
customer cone size of a certain ASi, named Beti, measures
the number of prefixes and other ASs that can be directly or
indirectly reached through this ASi. The Center for Applied
Internet Data Analysis (CAIDA) offers for free the AS RANK
page to the Internet community, classifying all the ASNs
according to their betweenness. Regarding the DIDS scenario
described before, an alarm message from a highly classified
AS tends to be more reliable.

2) Security Reputation: The reputation of an ASi, REPi,
refers to how reliable ASi looks for the other ASs. BGP
Ranking assesses the security level of each Internet AS based
on the number of blacklisted prefixes it has in any of the 15
blacklist platforms it considers as input data. The higher the
BGP Ranking level, the more reliable the AS is.

3) Mean Betweenness: The mean betweenness is evalu-
ated by averaging the betweenness value of each AS in the
AS PATH , as shown in Equation 1, in which n is the number
of non-repeated ASs in the AS PATH .

BetAS PATH =
1

n

n∑
i=1

Beti (1)

4) Mean Security Reputation: Likewise, mean security
reputation is evaluated by averaging the security reputation of
each AS in the AS PATH , as shown in Equation 2, in which
n is the number of non-repeated ASs in the AS PATH .

REPAS PATH =
1

n

n∑
i=1

REPi (2)

5) AS Peer Betweenness: AS peer is the last ASN of the
AS PATH , from which the BGP update message arrives
at the target AS. In general, peer agreements are celebrated
involving both reciprocal trust and business criteria, so it is
not expected to receive malicious messages from AS peers.

6) AS Peer Security Reputation: The security reputation of
an AS peer candidate is usually mutually assessed before the
peering agreement. However, as it can change over time, it
should be continually monitored by the AS administrator.

7) Maximum Betweenness in the AS PATH: This feature
is obtained by evaluating the betweenness of each AS in the
AS PATH list and selecting the highest one.

8) Minimum Betweenness in the AS PATH: This feature
is obtained by evaluating the betweenness of each AS in the
AS PATH list and selecting the lowest one.

9) Median Betweenness in the AS PATH: Refers to the
middle betweenness value, considering all the ASs in the
AS PATH . This kind of feature is usually adopted in ma-
chine learning models to workaround distortions related to
heavy tails in probability distributions.
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(a) Dendrogram graph considering BGP messages outside
the attack interval, DissAB = 25.3 + 34.2 = 59.5

(b) Dendrogram graph considering BGP messages inside
the attack interval, DissAB = 29.6 + 33.8 = 63.4

Figure 2: Dendrogram graphs obtained from the data set proposed in Section III.

10) Maximum Security Reputation in the AS PATH: This
feature is obtained by evaluating the security reputation of
each AS in the AS PATH list and selecting the highest one.

11) Minimum Security Reputation in the AS PATH: This
feature is obtained by evaluating the security reputation of
each AS in the AS PATH list and selecting the lowest one.

12) Median Security Reputation in the AS PATH: Refers to
the middle-security reputation value, considering all the ASs
in the AS PATH . This kind of feature is usually adopted in
machine learning models to workaround distortions related to
heavy tails in probability distributions.

IV. MACHINE LEARNING MODEL

Firstly, it is worth stating that different from choosing the
best machine learning model, our goal consists in proving it
is possible to infer the confidence level of each BGP update
message individually, based solely on its mandatory header
information.

Machine learning is an application of artificial intelligence
(AI) that provides systems with the ability to automatically
learn and improve from previous data without being explicitly
programmed for the task at hand. Besides preparing data, some
relevant factors come into play when choosing a machine
learning algorithm, such as the level of accuracy needed, the
time required to train the model, the number of features in
your data set, the linearity of your data, and, finally, whether
you need to combine more than one Algorithm (Ensemble
methods). As stated in Section II, the main objective of
this paper is to prove that it is possible to train a machine
learning model to infer the confidence level of each single
BGP update announcement by using only its mandatory header
information. In order to assess consistently the usability of our
data set, we performed non-supervised and supervised tests.

A. Non-supervised Tests

Although they are far from limited to this, non-supervised
models (NS) are commonly used before running a supervised
model as a support to label its input data. It works by
separating an unlabeled data set into a finite and discrete

set of data clusters. There are many methods to implement
data clustering in NS models. In this case, we choose to
combine K-means and hierarchical clustering (HC), which are
by far the most common algorithms used in non-supervised
models [19].

1) Hierarchical model: The hierarchical clustering algo-
rithms (HC) organize data according to the proximity matrix,
eliminating previous definitions of parameters. The results of
HC are usually depicted by a binary tree or dendrogram. The
root node of the dendrogram represents the whole data set
of observations, and each leaf node is regarded as a data
object. The intermediate nodes describe the extent that the
objects are close to each other, in which the height of the
dendrogram expresses the dissimilarity (Diss) between each
pair of clusters. The ultimate clustering results can be obtained
by cutting the dendrogram at different levels. Figure 2 shows
both dendrogram graphs calculated for the data set messages
outside (Figure 2a) and within (Figure 2b) the attack interval.

Analyzing the dendrograms shown in Figures 2a and 2b
it is possible to evaluate the dissimilarity (DissAB) between
groups A (green) and B (red) in the two scenarios depicted in
Figures 2a and 2b.

Comparing the dissimilarities evaluated in Figures 2b
and 2a, demonstrates that the two groups, A (green) and B
(red), become better characterized as different clusters during
the attack. In addition, comparing the number of observations
in each group, the relative size of group B regarding group
A within the attack interval in Figure 2b is larger (86%) than
in Figure 2a (75%), outside the attack interval, reinforcing
the hypothesis that it tends to contain the most malicious or
attack-related BGP messages.

B. Supervised Tests

The non-supervised tests described in Section IV-A con-
firmed the hypothesis that our unlabeled data set can be
divided into two different and well-defined clusters, one of
them related to the attack event. However, our main goal to
precisely predict the confidence level of each BGP update
message requires us to go further toward using a supervised
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learning model. Supervised models rely on learning algorithms
to approximate a mapping function from the input to the
output by training it with a previously labeled data set, as
a teacher supervises a student’s learning process. Therefore,
besides preparing a data set representing the target scenario,
whose process is described in Section III, we also need to label
the data set observations, according to their potential relation
to a malicious attempt.

As mentioned in Section III, our data set was built from
the public data set containing BGP data from ASs 513, 559,
and 6893 collected by RIPE RRC04, detailed in [20] Taking
the Code Red day in July 19th 2001 as our reference, we
extracted direct and indirect attributes from the header of each
BGP update announce, according to Sections III-A and III-B.

The data set resulting from the combination described
previously was divided into three different partitions, keeping
the attack causality in the timeline:

• Training – The training set is a portion of a data set used
to fit (train) a model for predicting values that are known
in the training set, but unknown in other (future) data.

• Validation – The validation partition is used to assess
the performance of the learning model that has been fit
on a separate portion of the same data set (the training
set). Typically, a validation set provides a useful guide to
selecting the best-performing model.

• Test – The test partition is a portion of a data set used to
assess the likely future performance of the learning model
that has been selected from among competing models,
based on its performance with the validation set.

To label our training partition, we added a new feature
named ATTACK, linking each observation to the Code Red II
attack mentioned before. The ATTACK feature was populated
by matching each sample observation in the before-mentioned
training partition with the data set proposed in [10], which
is 98% accurate, according to the results presented in [21].
ATTACK = 0, it indicates the observation is not related to
the Code Red II attack. Otherwise, ATTACK = 1 indicates
the observation at hand matches.

In the validation partition, we also added a new column
named Confidence Level (0 ≤ CL ≥ 1) to indicate the confi-
dence level of each observation, considering the reputation of
its origin AS, among others. The ML model then populates
this new column based on the learning obtained in the training
phase. After that, the ATTACK label is settled according to
Equation 3.

ATTACK =

{
0 , for CL > 0.5

1 , for CL ≤ 0.5
(3)

The validation phase also refers to choosing the best ma-
chine learning model in terms of performance, comparing the
ATTACK field is settled by using Equation 3 with the AT-
TACK label, obtained from the work in [10]. The validation al-
gorithm uses TensorFlow to automatically test different model
setups, changing the number of neurons, dropout, learning
rate, activation, and loss functions. After that, the validation

Figure 3: Confusion matrix
obtained from new data.

Table I: Performance results
obtained from the confusion
matrix in Figure 3.

Metric Value
Loss 0.56
Accuracy 0.72
Precision 0.67
Recall 0.95
AUC 0.75
PRC 0.77
f1-score 0.79

Table II: Comparing f1-score metric with similar works.

Work f1-score Year #features
SVM-based [22] 0.96 2019 37
SVM-LSTM [23] 0.72 2016 37
Graph [24] 0.93 2021 17
Multi-view [25] 0.96 2021 46
This work 0.79 2022 15

algorithm chooses the model presenting the best performance
regarding metrics obtained based on each confusion matrix
derived from the tests. The best model, selected after the
validation tests, has 112 neurons for the input layer, 88 hidden
layers, and 128 neurons for the output layer.

The main goal of the test phase is to evaluate the overall
performance of the learning model chosen in the validation
phase, using new data. It was accomplished by (i) generating
the confusion matrix from the test partition shown in Figure 3,
and by (ii) calculating the performance metrics from its
numbers, presented in Table I.

The performance metrics in Table I reveal a high recall,
which indicates the model performs well in classifying po-
tentially malicious messages. However, the model lacks the
precision to classify the set of malicious messages that are
truly related to an attack, which affects the f1-score metric,
shown in Table II.

The f1-score metric is one of the most well-known statistical
measures to compare ML models’ performance. It can be
defined as the harmonic mean between precision and recall.
As can be observed in Table II, although our model presents
a high recall value, the far-from-sensational precision of our
model takes its f1-score down.

Figure 4 plots in the same picture the confidence level (MC)
of all the BGP update messages in the test partition with their
respective ATTACK labels from the matching process with
the data set proposed in [10]. Although most of the orange
points – meaning the BGP message is potentially related to
an attack – are concentrated on the bottom part of the Figure 4,
we also have blue points – meaning the BGP update message
is not related to an attack – in the same area, indicating a
poor false-positive performance. The best-expected condition
is having all the blue points on the top, holding the orange
points on the bottom. However, due to the lackluster precision
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Figure 4: The blue points – indicating no-attack – are expected
to be concentrated on the top, while the orange points –
indicating attack – should be concentrated on the bottom.

of the model, one can see many blue points on the bottom and
a few orange ones on the top.

V. CONCLUSION AND FUTURE WORKS

In the widely distributed and cooperative Internet ecosys-
tem, it is not possible to trust the information before spending
some effort to check it according to its reputation on the net-
work. In this paper we considered a scenario where distributed
IDSs cooperatively share detection information by using the
BGP network to propose a machine-learning-based approach
that can be seen as an insight for developing systems aiming
to prevent the BGP network itself from malicious updates.

To the best of our knowledge, there is not a public dataset
based on intrusion detection alarms transported via BGP
messages [2]. Thus, we built our own data set from the indirect
effects over the BGP network due to a widespread worm
attack, already addressed in [10]. Even using a not-directly
related data set, performance results obtained from the confu-
sion matrix show that the proposed model performs accurately
to evaluate the confidence level of each BGP message. In
addition, although the precision still needs to be improved,
further performance metrics, namely ROC and PRC, show that
the model is able to generalize for new BGP data. Differently
from choosing the best machine learning model, we prove it
is possible to infer the confidence level of each BGP update
message individually, based solely on its mandatory header
information. Another conclusion speculates performance tends
to be even better, considering using a data set from input data
directly related to intrusion detection events.

For future works, we plan to improve the supervised learn-
ing model by including weighting for feature selection, aiming
to solve the precision problem mentioned in Section IV-B.
We are also implementing the DIDS proposal described in [2]
based on which we will build a new data set using BGP update
messages directly derived from intrusion detection events.
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