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Abstract
Border Gateway Protocol (BGP) is increasingly becoming a multipurpose protocol. However, it keeps suffering from security
issues such as bogus announcements for malicious goals. Some of these security breaches are especially critical for distributed
intrusion detection systems that use BGP as the underlay network for interchanging alarms. In this sense, assessing the
confidence level of detection alarms transported via BGPmessages is critical to prevent internal attacks. Most of the proposals
addressing the confidence level of detection alarms rely on complex and time-consuming mechanisms that can also be a
potential target for further attacks. In this paper, we propose an out-of-band system based on machine learning to infer the
confidence level of BGP messages, using just the mandatory fields of the header. Tests using two different data sets, (i) from
the indirect effects of a widespread worm attack and (ii) using up-to-date data from the IPTraf Project, show promising results,
considering well-known performance metrics, such as recall, accuracy, receiver operating characteristics (ROC), and f1-score.

Keywords DIDS · Machine learning · BGP · Distributed intrusion detection system

1 Introduction

The Border Gateway Protocol (BGP) turned 32 years old
in 2023, making it one of the longest-lasting, widely used
protocols ever deployed on the Internet. If we consider BGP
was initially conceived by Yakov Rekhter (IBM) and Kirk
Lougheed (Cisco) on two napkins during their lunchtime,
as described in [1], it is no doubt one of the most impres-
sive success stories of the Internet. The essential function of
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BGP is to control how IP packets are routed across the Inter-
net through exchanging routing and reachability information
between edge routers. As a whole, BGP plays the role of
directing traffic between autonomous systems (AS), which
are networks managed by a single entity on the backbone
of the Internet. When an AS gets set up, its administrator
configures a peer with another AS manually to share their IP
prefixes, which are then propagated to other AS, and so on.
Many researchers argue that the two main reasons for BGP’s
fast widespread establishment as the Internet routing proto-
col are its simplicity and its ability to combine technical and
business criteria to set up AS neighborhoods.

The tremendous success of BGP as “the glue of the
Internet” also keeps pushing its evolution along the time
to support other routing protocols in the case of MP-BGP
[2] and new features such as BGP-FlowSpec [3]. However,
despite the several improvements it has had since its world-
wide implementation, BGP still keeps being vulnerable to
both malicious attacks and human errors [4]. For example,
there are roughly 73,000 ASs that make up the global Inter-
net and little information on how each AS peering filter must
be configured. This means that whenever a new bogus route
(also known as a bogus prefix) is announced (either through
intentional hijacking or just a typo) by amalicious originator,
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neighboring ASs send traffic to the wrong network, and this
can spread across the Internet. Besides its importance for pro-
tecting prefixes’ reachability, assessing the confidence level
of these messages also helps to improve self-defense mecha-
nisms of distributed intrusion detection systems (DIDS) that
use BGP as their underlying network, as proposed in [5].

Improving the BGP security remains a hot topic in
academia, inspiring several works on that for a long time.
Although there is a myriad of approaches addressing secu-
rity issues on the BGP protocol, it is possible to recognize
the approach based on Resource Public Key Infrastructure
(RPKI) [6] as the main proposal, instead of solely relying on
Internet Routing Registries (IRRs) databases [7]. While fil-
tering rules are both labor and time-intensive due to the need
to constantly maintain and update records, the distributed
public database of RPKI, which is composed of crypto-
graphically signed records concerning routing information
supplied by networks, is considered to be a highly secure
and reliable mechanism, but one cannot guarantee its accu-
racy [8]. Actually, RPKI grounds full-scale architectures that
provide origin and topology authentication, such as route ori-
gin validation (ROV), which uses route origin authorizations
(ROAs)—digitally signed objects that fix an IP address to a
specific network or autonomous system—to establish the list
of prefixes a network is authorized to announce.

Nonetheless, although recognizing RPKI as a consoli-
dated approach for validating BGP routing information, it
still needs a third-party certification entity. In addition, imple-
mentingRPKI on the entire Internet is far frombeing a simple
task. According to the analysis proposed in [9], while large
ASs (e.g., such as Google, AT&T, NTT, and Cogent) are
already announcing to be performing the origin validation,
small ASs are not considering it at the time of this writing. At
this point, it is worth reminding that the security of a chain
system is only as strong as its weakest link.

As a subdivision of Artificial intelligence (AI), machine
learning (ML) is an important tool to support decision-
making [10]. Using massive data sets as input, a ML model
is able to discover patterns and deviations from expected
behavior. Indeed, machine learning models have been inten-
sively used to detect BGP anomalies, including those related
to widespread worm attacks, e.g., such as Code Red II [11],
which occurred in July 19th , 2001 and Slammer [12], that
took place in January 25th , 2003. However, most models
proposed with this goal utilize volume or statistic-based
attributes that require a large amount of data for each distinc-
tive feature, which compromises the one-by-one processing
nature of some distributed intrusion detection systems.

This paper is an extension of our former paper [13],
which proposes an out-of-band approach composed of a
15-attribute data set and a machine learning model, able to
infer the confidence level of each BGP update message that

arrives at a given AS. The data sets used in this paper com-
bine direct and indirect attributes obtained from individual
instances of these messages. That is, in the same way as
each BGP update announcement is processed by a router to
update its reachability table, the confidence level is evalu-
ated message by message, using only the mandatory fields
of the BGP header, thus dispensing volume or statistic-based
attributes. This is especially important due to the one-by-
one nature of the DIDS alarms from the federated IDSs to
be combined at the destination AS. In this case, knowing
the confidence level of each BGP message helps to pre-
vent fake detection alarms, aiming to compromise the overall
detection performance of theDIDS. Results obtained consid-
ering somewell-knownperformancemetrics—such as recall,
accuracy, receiver operating characteristics (ROC), and f1-
score—show that the model is able to perform well for new
input data. The aforementioned extension includes a sum-
marized analysis of a new up-to-date dataset, by matching
the BGP row data collected from the Rede-Rio Project [14]
network with the anomaly reports of the IPTraf Project [15].

The remainder of this paper is organized as follows. In
Sect. 2, we shortlist the main works related to improving the
BGP security. We also emphasize the contributions of this
paper by comparing itwith the existing approaches. Section 3
explains the process adopted to build the data set used to train
themachine learningmodel. Section 4 describes the unsuper-
vised and supervised tests using the data set built in Sect. 3
and presents some relevant performance results. Section 5
presents the data set analysis performed over the real data
obtained from IPTraf Project. Finally, in Sect. 6, we close
the article with an objective analysis correlating the results
obtained from the models with the paper’s contributions.

2 Related work

Network topology changes provoked by the effects of some
kind of attack have been very well studied in academia [16].
The survey proposed in [17] presents a comprehensive
approach regarding BGP anomalies, including a canonical
taxonomy classifying them according to their intentionality
and causality. The study in [17] relates some of the most
important global worm attacks such as Nimda and Code Red
II with large spikes of BGP messages observed during these
attacks.Another globalwormattack that provoked a dramatic
increase in BGP update announcements—100 times bigger
in the case of some ASs—was Slammer. In all these cases,
even though the attacks did not intend to directly compro-
mise the BGP network, their effects certainly did. Taking
advantage of this unnatural behavior, several works have
proposed BGP-labeled data sets to train machine learning
models aiming to detect—and sometimes classify—attacks.

123



Annals of Telecommunications

The labeled data set proposed in [18] has 35 features dis-
tributed as direct, indirect, volume, and statistical. To label
their data set, P. Fonseca et al. [18] correlated information
from some global events that affected Internet traffic, such
as worldwide worm attacks, the 2005 Moscow blackouts,
the 2011 earthquake in Japan, the 2015 AWS route leak, with
BGP historical logs from the Ripe Project. Performance tests
using new data show promising results in detecting and clas-
sifying the anomalies between attacks and events. In the same
track, the approach proposed in [19] relies on data mining
models to detect abnormal behaviors on the global routing
infrastructure, by learning from a labeled 15-features data
set. According to the authors, abnormal events such as large-
scale power outages and worm attacks can affect the global
routing infrastructure and consequently create regional or
global Internet service interruptions. Graphical results show
that the system is able to yield accurate classification in near
real-time.

An autonomous system (AS) deals with an enormous
number of BGP updates every day. These update messages
aim to inform the AS route on how to reach a new prefix on
the Internet or delete it from its routing table. In such a large
amount of data, it is common to observe mistaken messages
containing incorrect information as a result of misconfig-
ured ASs or even fake messages originated by malicious
attempts that can seriously damage Internet routing. The
detector proposed in [20] relies on machine learning tech-
niques to reproduce the “gut feeling” of a network expert
to classify BGP updates as either attacks or misconfigured
messages. The idea is to train auto-encoders to generate only
clean data as opposed to attack data, which does not share
the same essential features. However, due to the difficulties in
obtaining a real data set containing collections of anomalous
BGP announcements, the authors crafted their attack data by
editing random updates. The tests using the f-score as the
main performance metric, which is a measure of the model’s
accuracy, show promising results.

The system proposed in [21] requires no protocol mod-
ifications and utilizes existing monitoring infrastructure to
infer the consistency of the BGP announcements accord-
ing to the network topology. Utilizing geographical location
data from the “whois” database and the topological informa-
tion, the system builds an AS connectivity graph, classifying
all autonomous system nodes as either core or periphery
nodes. Violations are detected by checking if the sequence
of autonomous systems satisfies the constraints dictated by
their observations regarding theAS_PATHattribute of update
messages. Although the proposed system can be applied
immediately and does not interfere with the existing infras-
tructure, it presents topological restrictions that permit some
attacks to succeed.

The work presented in [22] reveals that malicious activ-
ity is not necessarily evenly distributed across the Internet.
Rather, themodel based on applying Jaccard similarity shows
that there are ASs solely engaged in malicious activity. For
example, while a majority of ASs have little to no malicious
activity, a few ASs have as much as 0.5 → 10% of their IP
addresses engaged in malicious activities. Another relevant
result refers to the number of changes in BGP connections:
ASs harboring malicious behavior have a greater number
of connectivity changes than ASs not involved in malicious
activities, and these changes involve more of their peers.

Considering specifically the distributed intrusion detec-
tion system (DIDS) environment, trusting warning messages
according to their source’s reputation or skill is a critical secu-
rity point to prevent internal attacks. The intrusion detection
network proposed in [23] infers the trustworthiness of each
distributed peer based on its performance in solving inter-
nal puzzles. The more successful a node performs in solving
security puzzles, the more reliable it is to the rest of the intru-
sion network. In the same sense, the more reliable a node is
according to its network’s point of view, the higher the prior-
ity it has to challenge others. In our previous work [5], each
federated IDS traversed by a suspicious flow that detects it as
an intrusion uses the BGP-FlowSpec protocol to cooperate
with the distributed detection platform by announcing a pos-
sible ongoing attack. For a destination target that receives
these BGP-based alarms from a distant AS, knowing how
much it can trust this information before making security
decisions is imperative. In this case, the consensus-based
approach of the distributed system imposes a message-by-
message analysis, instead of extracting volumetric attributes
from the row data of BGP update messages. The main con-
tribution of this paper is to show that it is possible to infer the
confidence level of each BGP update message individually,
based solely on its mandatory header information.

Created onMay22, 1992,Rede-Rio [14] carries out activi-
ties related to science, technology, and education in the State
of Rio de Janeiro - Brazil. Rede-Rio interconnects several
government institutions in Brazil with the Internet, permit-
ting them to interchange knowledge for the common good
of the Brazilian people. Connected to Rede-Rio, IPTraf [15]
is part of its security solutions. IPTraf collects and processes
flow data from Rede-Rio routers, aiming to detect traffic
anomalies. The flow data processed by IPTraf gives rise to
several traffic dashboards that permit the network adminis-
trators to check traffic online. IPTraf also submits the flow
information into a detection systems chain that emits security
alarms in case of detecting traffic anomalies. Both Rede-Rio
and IPTraf are part of this paper by enabling us to work with
up-to-date data to build the extent dataset to train ourmachine
learning model.
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3 Data set description

Building a labeled dataset demands either customizing an
open Internet-available data set related to the objectives at
hand or using a specific data set reproducing the same sce-
nario [24]. Thinking on that, we propose building a data set
containing strategic features, extracted individually from the
path attributes of each BGP update message. This data set is
used to teach a regression-based machine learning model to
infer the confidence level of each BGP update message (CLi )
based on its mandatory header information. Combining the
positive-prediction value PPVi thatmeasures the precision of
the IDSi , with CLi evaluated from the BGPi header, we con-
solidate the confidence mass (MCi ) of the intrusion evidence
i [5]. In other words, besides solely using the fickle positive-
prediction value of each federated IDS member (PPVi ), the
idea is to combine the two data inputs, as depicted in Fig. 1.

To the best of our knowledge, we still do not have any
DIDS data set based on FlowSpec messages. Therefore, we
consider a global worm attack named Code Red II occurred
in July 19th 2001 between 10am and 8pmGMT, as our refer-
ence. In that time, Code Red II imposed a worldwide impact
on the BGP network, triggering message spikes on the RIPE
NCC routing collector RRC04 coming from ASs 513, 559,
and 6893 peers during the active attack interval [18]. In order
to have a comprehensive view regarding the attack occur-
rence, we collected raw BGP data in three different time
intervals: before the attack (2001-07-12), during the attack,
and after the attack (2001-07-26).

3.1 Direct features

The direct feature is the data set attribute extracted from the
input data and used in the machine learning model as it is.

• Origin:
It is directly extracted from the ORIGI N code, which
is a mandatory attribute whose values define the origin

of the Network Layer Reachability Information field
(NLRI) according to its learning process. It can take three
different values: i (IGP), e (EGP), or ? (incomplete).
Normally, the ORIGI N code plays a secondary role in
the BGP route selection algorithm as the fourth decision
criterion. However, according to the analysis presented
in [25], there are some vulnerabilities related to bogus
ORIGI N code.

• ASN Repetitions:
Reflects the number of ASN repetitions in the AS_PATH.
It is generally related to the AS prepending (ASPP)
mechanism to manipulate the route choice for the AS
destination. The ASPP is largely used as a traffic engi-
neering tool to control the usage of input links by adding
the local Autonomous System Number (ASN) multiple
times in the AS-PATH, making it longer and thus less
likely to be chosen by other ASs. Although ASPP is
beneficial for traffic engineering, it can compromise the
security of Internet routing. More precisely, ASPP use
can increase the risk of prefix interception attacks or trig-
ger DoS attacks.

• AS_PATH Length:
Refers to the number of non-repeating ASNs in the
AS_PAT H_LENGT H field. Recent works as in [26]
show that the most traffic on the Internet crosses up
to 5 ASs before arriving at its destination AS. Thus,
announcements from distant ASs are less common and,
therefore, less reliable.

3.2 Indirect features

Indirect features are the ones obtained from the information
present in the input data, requiring some further processing
to become data set attributes.

• Betweenness of the originator-AS: The betweenness or
customer cone size of a certain ASi , named Beti , mea-
sures the number of prefixes and other ASs that can be

Fig. 1 Process of consolidating the confidence mass MCi of the intrusion evidence, by combining PPVi and the confidence level CLi evaluated by
the machine learning model
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directly or indirectly reached through this ASi . The Cen-
ter for Applied Internet Data Analysis (CAIDA) offers
for free the AS RANK page to the Internet community,
classifying all the ASNs according to their betweenness.
Regarding the DIDS scenario described before, an alarm
message from a highly classified AS tends to be more
reliable.

• Security reputation:
The reputation of an ASi , REPi , refers to how reliable
ASi looks for the other ASs. BGP Ranking assesses the
security level of each Internet AS based on the number
of blacklisted prefixes it has in any of the 15 blacklist
platforms it considers as input data. The higher the BGP
Ranking level, the more reliable the AS is.

• Mean betweenness:
The mean betweenness is evaluated by averaging the
betweenness value of each AS in the AS_PAT H , as
shown in Eq. 1, in which n is the number of non-repeated
ASs in the AS_PAT H .

Bet AS_PAT H = 1

n

n∑

i=1

Beti (1)

• Mean security reputation:
Likewise, mean security reputation is evaluated by
averaging the security reputation of each AS in the
AS_PAT H , as shown in Eq. 2, in which n is the number
of non-repeated ASs in the AS_PAT H .

REPAS_PAT H = 1

n

n∑

i=1

REPi (2)

• AS peer betweenness:
AS peer is the last ASN of the AS_PAT H , from which
the BGP update message arrives at the target AS. In
general, peer agreements are celebrated involving both
reciprocal trust and business criteria, so it is not expected
to receive malicious messages from AS peers.

• AS peer security reputation:
The security reputation of anAS peer candidate is usually
mutually assessed before the peering agreement. How-
ever, as it can change over time, it should be continually
monitored by the AS administrator.

• Maximum betweenness in the AS_PATH:
This feature is obtained by evaluating the betweenness of
each AS in the AS_PAT H list and selecting the highest
one.

• Minimum betweenness in the AS_PATH: This feature
is obtained by evaluating the betweenness of each AS in
the AS_PAT H list and selecting the lowest one.

• Median betweenness in the AS_PATH:

Refers to the middle betweenness value, considering all
the ASs in the AS_PAT H . This kind of feature is usu-
ally adopted in machine learning models to workaround
distortions related to heavy tails in probability distribu-
tions.

• Maximum security reputation in the AS_PATH:
This feature is obtained by evaluating the security rep-
utation of each AS in the AS_PAT H list and selecting
the highest one.

• Minimum security reputation in the AS_PATH:
This feature is obtained by evaluating the security rep-
utation of each AS in the AS_PAT H list and selecting
the lowest one.

• Median security reputation in the AS_PATH:
Refers to the middle-security reputation value, consid-
ering all the ASs in the AS_PAT H . This kind of
feature is usually adopted in machine learning models
to workaround distortions related to heavy tails in prob-
ability distributions.

4 Machine learningmodel

Firstly, it is worth stating that different from choosing the
best machine learning model, our goal consists in proving it
is possible to infer the confidence level of each BGP update
message individually, based solely on its mandatory header
information.

Machine learning is an application of artificial intelligence
(AI) that provides systems with the ability to automatically
learn and improve from previous data without being explic-
itly programmed for the task at hand. Besides preparing
data, some relevant factors come into play when choosing
a machine learning algorithm, such as the level of accuracy
needed, the time required to train the model, the number
of features in your data set, the linearity of your data, and
finally, whether you need to combine more than one algo-
rithm (Ensemble methods). As stated in Sect. 2, the main
objective of this paper is to prove that it is possible to train a
machine learning model to infer the confidence level of each
single BGP update announcement by using only its manda-
tory header information. In order to assess consistently the
usability of our data set, we performed non-supervised and
supervised tests.

4.1 Non-supervised tests

Although they are far from limited to this, non-supervised
models (NS) are commonly used before running a super-
vised model as a support to label its input data. It works by
separating an unlabeled data set into a finite and discrete set
of data clusters. There are many methods to implement data
clustering in NS models. In this case, we choose to combine
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K -means and hierarchical clustering (HC), which are by far
the most common algorithms used in non-supervised mod-
els [27].

4.1.1 Hierarchical model

The hierarchical clustering algorithms (HC) organize data
according to the proximity matrix, eliminating previous def-
initions of parameters. The results of HC are usually depicted
by a binary tree or dendrogram. The root node of the den-
drogram represents the whole data set of observations, and
each leaf node is regarded as a data object. The intermediate

nodes describe the extent to which the objects are close to
each other, in which the height of the dendrogram expresses
the dissimilarity (Diss) between each pair of clusters. The
ultimate clustering results can be obtained by cutting the den-
drogram at different levels. Figure 2 shows both dendrogram
graphs calculated for the data set messages outside (Fig. 2a)
and within (Fig. 2b) the attack interval.

Analyzing the dendrograms shown in Fig. 2a and b, it
is possible to evaluate the dissimilarity (DissAB) between
groups A (green) and B (red) in the two scenarios depicted
in Fig. 2a and b.

Fig. 2 Dendrogram graphs
obtained from the data set
proposed in Sect. 3
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Training Validation Test

Labeled dataset derived from the BGP data collected
in 2001-07-19 

81.6% 8.8% 9.6%

Fig. 3 Splitting strategy adopted in this work to train the algorithms,
validate the automatic adjusting, and evaluate its performance

Comparing the dissimilarities evaluated in Fig. 2b and a
demonstrates that the two groups, A (green) and B (red),
become better characterized as different clusters during the
attack. In addition, comparing the number of observations in
each group, the relative size of group A regarding group B
within the attack interval in Fig. 2b is larger (25%) than in
Fig. 2a (14%), outside the attack interval, reinforcing the
hypothesis that it tends to contain the most malicious or
attack-related BGP messages.

4.2 Supervised tests

The non-supervised tests described in Sect. 4.1 confirmed
the hypothesis that our unlabeled data set can be divided into
two different andwell-defined clusters, one of them related to
the attack event. However, our main goal to precisely predict
the confidence level of each BGP update message requires
us to go further toward using a supervised learning model.
Supervised models rely on learning algorithms to approx-
imate a mapping function from the input to the output by
training it with a previously labeled data set, as a teacher
supervises a student’s learning process. Therefore, besides
preparing a data set representing the target scenario, whose
process is described in Sect. 3, we also need to label the

Table 1 Comparing f1-score metric with similar works

Work f1-score Year #features

SVM-based [30] 0.96 2019 37

SVM-LSTM [31] 0.72 2016 37

Graph [32] 0.93 2021 17

Multi-view [33] 0.96 2021 46

This work 0.79 2022 15

data set observations, according to their potential relation to
a malicious attempt.

As mentioned in Sect. 3, our data set was built from the
public data set containing BGP data from ASs 513, 559, and
6893 collected by RIPE RRC04, detailed in [28]. Taking the
CodeRedday in July 19th 2001 as our reference,we extracted
direct and indirect attributes from the header of each BGP
update announcement, according to Sects. 3.1 and 3.2.

The data set resulting from the combination described pre-
viously was divided into three different partitions, keeping
the attack causality in the timeline:

• Training—The training set is a portion of a data set used
to fit (train) a model for predicting values that are known
in the training set, but unknown in other (future) data.

• Validation—The validation partition is used to assess
the performance of the learning model that has been fit
on a separate portion of the same data set (the training
set). Typically, a validation set provides a useful guide to
selecting the best-performing model.

• Test—The test partition is a portion of a data set used
to assess the likely future performance of the learning
model that has been selected among competing models,
based on its performance with the validation set.

Figure 3 provides a graphical idea about the strategy
adopted in this paper to split our dataset.

Fig. 4 Confusion matrix and the
respective values of
performance
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Fig. 5 The blue
points—indicating no
attack—are expected to be
concentrated on the top, while
the orange points—indicating
attack—should be concentrated
on the bottom

To label our training partition, we added a new fea-
ture named ATTACK, linking each observation to the Code
Red II attack mentioned before. The ATTACK feature was
populated by matching each sample observation in the
before-mentioned training partition with the data set pro-
posed in [18], which is 98% accurate, according to the results
presented in [29]. AT T ACK = 0 indicates the obser-
vation is unrelated to the Code Red II attack. Otherwise,
AT T ACK = 1 indicates the observation at hand matches.

In the validation partition, we also added a new column
named Confidence_Level (0 ≤ CL ≤ 1) to indicate the
confidence level of each observation, considering the rep-
utation of its origin AS, among others. The ML model then
populates this new column based on the learning obtained in
the training phase. After that, the ATTACK label is settled
according to Eq. 3:

AT T ACK =
{
0 , for CL > 0.5

1 , for CL ≤ 0.5
(3)

The validation phase also refers to choosing the best
machine learning model in terms of performance, comparing
the ATTACKfield is settled by using Eq. 3 with the ATTACK
label, obtained from the work in [18]. The validation algo-
rithm uses TensorFlow to automatically test different model
setups, changing the number of neurons, dropout, learning
rate, activation, and loss functions. After that, the validation
algorithmchooses themodel presenting the best performance
regarding metrics obtained based on each confusion matrix
derived from the tests. The best model selected after the val-
idation tests has 112 neurons in the first hidden layer after

the input layer, 88 hidden layers, and 128 neurons for the last
hidden layer, before the output layer.

The main goal of the test phase is to evaluate the overall
performance of the learning model chosen in the validation
phase, using new data. It was accomplished by (i) gener-
ating the confusion matrix from the test partition shown in

Fig. 6 IPTraf architecture as part of the security solutions of the Rede-
Rio Project
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Fig. 4a and by (ii) calculating the performance metrics from
its numbers, presented in Fig. 4b.

The performance metrics in Fig. 4b reveal a high recall,
which indicates themodel performswell in classifying poten-
tially malicious messages. However, the model lacks the
precision to classify the set of malicious messages that are
truly related to an attack, which affects the f1-score metric,
shown in Table 1.

The f1-scoremetric is one of themost well-known statisti-
cal measures to compare MLmodels’ performance. It can be
defined as the harmonic mean between precision and recall.
Therefore, in the case of imbalanced datasets, f1-score can
be considered as a reliable metric.

As can be observed in Table 1, although our model
presents a high recall value, the far-from-sensational pre-
cision of our model takes its f1-score down.

Figure 5 plots in the same picture the confidence level
(MC ) of all the BGP update messages in the test partition
with their respective ATTACK labels from the matching pro-
cess with the data set proposed in [18]. Although most of
the orange points—meaning the BGP message is potentially
related to an attack—are concentrated on the bottom part of
Fig. 5, we also have blue points—meaning the BGP update
message is not related to an attack—in the same area, indi-
cating poor false-positive performance. The best-expected
condition is having all the blue points on the top, holding the

Fig. 7 Dendrogram graphs
obtained from the IPTraf data
set proposed in Sect. 5
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Fig. 8 Confusion matrix and the
respective values of
performance

orange points on the bottom. However, due to the lackluster
precision of the model, one can see many blue points on the
bottom and a few orange ones on the top.

5 IPTraf dataset analysis

As part of the security solutions ofRede-Rio, IPTraf plays the
critical role of providing network administrators with online
dashboards containing detailed traffic information. IPTraf
collects flow information from the Rede-Rio routers using
Netflow protocol [34]. Once stored in the IPTraf database,
flow files are organized and processed in the Nfsen [35] to
generate the online traffic dashboards. From Nfsen data, it is
possible to extract statistical information that is simultane-
ously processed by two different anomaly detector systems,
as shown in Fig. 6. The Guardian system is in charge of
alarming any anomaly detected to the Rede-Rio‘s network
operations center.

To build the newdata set,we reproduced the samemethod-
ology used in Sect. 3, this time, using fresh BGP raw data,
collected from the Rede-Rio routers. To label this new data
set, we used the two anomaly detection systems that compose
the IPTraf architecture, shown in Fig. 6. In other words, for
each anomaly detected by both anomaly detectors, we link
to the related BGP update data collected from the Rede-Rio
BGP network, making AT T ACK = 1. For the remain-
ing row data not related to any anomaly detected, we mark
AT T ACK = 0. The matching process between the BGP
data with the anomaly alarm from IPTraf was accomplished
by using key fields, such as timestamp and origin AS. We
made the dataset available through the following link (https://
www.ravel.ufrj.br/files/papers/CSNet2023dataset.zip) or by
mailing the authors.

5.1 Unsupervised tests

Figure 7 shows the hierarchical model, named dendrogram,
of the new data set built using just the fresh BGP data col-
lected from the Rede-Rio routers, without the AT T ACK
label.

For both dendrogram graphs in Fig. 7, outside and within
the attack interval, it is possible to realize three well-defined
clusters. However, comparing the dendrogram in Fig. 7awith
Fig. 7b, it is possible to find noticeable differences,mainly for
the number of groups that changed in Fig. 7b. This finding
reveals that the behavior of BGP messages changed in the
anomaly interval.

5.2 Supervised tests

Following the same model described in Sect. 4, we submit
the validation part of the labeled data sets to an optimization
process to find the best model in terms of performance.

The results shown in Fig. 8 demonstrate that the machine
learning model keeps performing well in classifying the con-
fidence level of theBGPupdatemessages that are received by
the routers in the Rede-Rio. In other words, including using
the newdata set obtained from freshBGP rowdata, it is possi-
ble to infer the confidence level of the BGP update messages
by using just the mandatory fields of the BGP header.

6 Conclusion and future works

In the widely distributed and cooperative Internet ecosystem,
it is not possible to trust the information before spending
some effort to check it according to its reputation on the
network. This work considers the scenario proposed in [5],
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where distributed IDSs cooperatively share detection infor-
mation by using the BGP network, to address its security
vulnerabilities related to internal attacks. This paper can also
be seen as an insight for developing systems aiming to pre-
vent the BGP network itself from malicious updates.

To the best of our knowledge, there is not a public dataset
based on intrusion detection alarms transported via BGP
messages [5]. Thus, we built our own data set from the
indirect effects over the BGP network due to a widespread
worm attack, already addressed in [18]. Even using a not-
directly related data set, performance results obtained from
the confusion matrix show that the proposed model performs
accurately to evaluate the confidence level of each BGPmes-
sage. In addition, although the precision still needs to be
improved, other performancemetrics, namelyROCandPRC,
show that the model can generalize for new BGP data. Dif-
ferently from choosing the best machine learning model, we
prove it is possible to infer the confidence level of each BGP
update message individually, based solely on its mandatory
header information. Another conclusion speculates that per-
formance tends to be even better, considering using a data set
from input data directly related to intrusion detection events.

For future works, we plan to improve the supervised
learning model by including weighting for feature selection,
aiming to solve the precision problemmentioned in Sect. 4.2.
We are also implementing the DIDS proposal described
in [5], which will enable us to build a new data set using
BGP update messages directly derived from intrusion detec-
tion events.
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