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Abstract
A federation-based DIDS is a security platform composed of autonomous IDS able to learn with their data and cooperate
with each other to improve the overall detection performance. However, evaluating the detection performance of a DIDS,
specially considering its heterogeneous environment and the wide range of threats that emerge every single day, is not trivial.
Although the Bayesian inference approach presents itself as a compatible option to model this kind of systems, lacking
a sufficiently large and diverse dataset is a relevant issue for building blocks of prior knowledge. Our approach relies on
the “learn-from-data” insight of the Beta function to propose a modeling framework aiming to assess the overall detection
performance of DIDS systems, regardless of dataset rounds. Comparing our results to the numbers obtained either from
testbeds or simulation, the proposed model presents a fair approximation.

Keywords DIDS · Probability of detection · Beta distribution · Functional performance evaluation

1 Introduction

An intrusion detection system (IDS) attempts to identify
unauthorized use, misuse, or abuse of computer and network
systems. As intrusions become even more sophisticated,
dealing with them requires increasingly complex and high-
performance systems [1], able to consistently cover an
ever-growing wide range of threats. The assessment of the
functional performance of an intrusion detection system
(IDS) depends on metrics especially designed to measure its
detection amplitude and its auditing capacity to distinguish
intrusive from non-intrusive activities [2]. These metrics
are based on numbers that are systematically organized
in a framework named confusion matrix, containing four
possible results: false-positive (#FP), false-negative (#FN),
true-positive (#TP), and true-negative (#TN). However,
building a confusion matrix depends on empirical tests of
training the IDS in question using a dataset containing both
normal and malicious data. Besides choosing a sufficiently
large and diversified dataset, its construction process should
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match the network scenario in which this IDS is supposed
to operate. Even using a simulation model, the need
for building a confusion matrix from a dataset training
remains once the performance metrics keep coming from its
numbers. Table 1 shows the confusion matrix framework.

According to [3], there are thousands of different public
datasets on the Internet to download, such as DARPA98,
KDD99, ISC2012, and ADFA13. Although there are
many options, generally, datasets are built using particular
proceedings that consider some specific objectives they
were meant for [4]. In other words, there is not a
complete dataset that comprises all the known types of
intrusions, without taking into account those that are still
unknown. Besides, some of these datasets may lack traffic
diversity and volume, while others contain anonymized
packet information, which cannot fairly reflect the current
trends [5]. It means, even testing the same IDS, each dataset
gives rise to different confusion matrix, and consequently to
distinct evaluation outcomes regarding its performance [6].
This problem becomes even more challenging in the case
of distributed intrusion detection systems (DIDS) composed
of several independent IDS members geographically spread
across the worldwide Internet.

A distributed intrusion detection system (DIDS) can be
considered as an evolution of typical IDS aiming to improve
functional performance and overcome problems related
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Table 1 Confusion matrix disposition

IDS Intrusion Normal

Detection #TP #FP

No detection #FN #TN

to its monolithic perimeter-based architecture. According
to [7], a DIDS consists of multiple individual intrusion
detection systems (IDS) spread on a network, where all of
which communicate with each other or with a central server
to facilitate advanced network monitoring, incident analy-
sis, and instant attack data. The grounding insight behind
the DIDS approach relies on expanding the underlying
sensory surface by combining information from multiple
sources to increase the detection range (eventually including
zero-day attacks1) and reduce the false-positive alarms rate.
However, evaluating the functional performance of a DIDS
composed of autonomous agents using empirical numbers
obtained from rounds of data sets is a hard-boiled task and
may not reproduce such a heterogeneous and dynamic envi-
ronment. In this case, building an analytic framework to
model the DIDS behavior can be considered as an alterna-
tive option to approximate the practical scenario. Central to
the Bayesian philosophy lies in describing all the unknown
data probabilistically, even before observing them, as in
the prior probabilities. Nonetheless, specifying a prior that
fairly reproduces the previous knowledge regarding any sys-
tem remains a challenge due to the subjectivity it sometimes
involves [8].

In this paper, we consider the DIDS platform described
in our anterior work [9] to propose a novel analytic model
blending Bayesian inference with Beta distribution aim-
ing to evaluate the functional performance of DIDS plat-
forms. This paper also contributes with a new analyti-
cal framework reproducing a practical DIDS scenario, in
which autonomous detection agents geographically dis-
tributed cooperate with each other as a detection federation
to alarm potential security threats. Instead of using static
prior knowledge obtained empirically, which tends to be out
of date over time, the proposed model reduces the depen-
dence on a dataset-based confusion matrix by dynamically
balancing the Bayesian likelihood with the current intrusion
evidence. In other words, besides updating the likelihood
parameter by combining the belief degree of the arriving
advertisements, the prior knowledge about the detection
probability of the DIDS platform fits the current detection
scenario. To validate the modeling approach, we present a

1A named zero-day attack occurs when an attacker exploits a
vulnerability before security teams can find a fix.

comparative analysis involving the two models considered
in this paper with the results obtained from a testbed. The
performance results obtained from the metrics modeled
according to the proposed approach show a more coherent
behavior considering the trade-off involving the sensor net-
work size and the number of intrusion evidence received at
the combination point.

The rest of the paper is organized as follows. In Section 2,
we present the main works focused on evaluating the detec-
tion performance of distributed intrusion detection systems.
We also emphasize the contribution of this paper by com-
paring the approaches. Section 3 reviews the architecture of
the DIDS platform considered in this paper. In Section 4,
we present our modeling approach to evaluate the detection
performance of a consensus-based DIDS. Section 5 presents
a comparative analysis between the analytic models consid-
ered in this paper. In Section 6, we close the article with an
objective analysis correlating the results obtained from the
models with the paper contribution.

2 Related works

It is not new the idea of distributing multiple IDS and
making them collaborate with each other to improve func-
tional performance and overcome critical problems related
to the monolithic perimeter-based architecture of typical
IDSes. Indeed, such a visionary approach keeps being the
central matter of several works, such as [10–14], a long time
ago. Some of these works, and many others, still ground mo-
re recent proposals motivated by the drastic increase of the
number and the complexity of new cyberattacks. It is the
case in [15], where the authors propose a distributed archi-
tecture composed by lightweight IDSes that hierarchically
collaborate with each other to overcome the single point
of failure. The results obtained from dataset training using
different compositions show notable improvements when
compared to the non-collaborative model.

More recently, the work presented in [16] extends the
concept of Intrusion Detection Networks (IDN) as an over-
lay network that enables IDSes to exchange intrusion infor-
mation and knowledge in order to improve the overall per-
formance. The IDN architecture proposed by Fung et al. is
based on a collaboration framework that includes both trust
and acquaintance managements, aiming to prevent dishon-
est or incompetent nodes and insider attacks. The functional
performance of the collaborative decision system is mod-
eled by associating a acquaintances cost for each of the four
possible outcomes of the confusion matrix, where the Beta
distribution combined with Bayesian inference is used to
model the positive rate of each IDS member. The authors
compare the results obtained from the proposed model with
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other heuristic approaches (simple and weighted average
aggregation) to evaluate the overall detection performance
of the IDN approach. Finally, the robustness and scalability
of the system are also assessed by analyzing the impact of
the malicious insiders in the system performance, and the
relationship between the number of acquaintances versus
the number the nodes of the network, respectively.

Closely related to the collaborative essence of distributed
intrusion detection systems is the concept of federated
learning. It permits multiple actors to build a common
machine learning model without sharing user data, thus
addressing critical issues such as data privacy, data security,
data access rights access to heterogeneous data. Intrusion
detection approaches like in [17] and [18] used federated
learning algorithms to solve specific problems related to
privacy and resource-constrained environments to propose
distributed intrusion detection systems with high functional
performance.

The Bayesian philosophy refers to combining the evi-
dence contained in a signal with the prior knowledge of the
probability distribution of the process. The work presented
in [19] proposes a method based on Bayesian estimation to
sequentially update the probability of detection for track-
ing. The proposed approach forms a feedback loop where
the tracker output is used to estimate the prior probability θ

after each scan. In their analytic model, the authors assume
Pr(θ) as a Beta distribution with parameters (α, β). The up
to date value for θ is obtained by computing the mean condi-
tional probability EPr(Θ|Xk)[Θ], being Xk the data obtained
in the kth scan. The simulation results indicated that using
high informative prior decreases the detection performance.

Due to the variety of shapes it can take, Beta distribution
is commonly used to reproduce semi-informative prior pro-
babilities in case of Bayesian anomaly detection. The analy-
tic framework proposed in [20] relies on a univariate time
series algorithm to detect the occurrence of an anomalous
disease outbreak. In their proposal, the authors use a dataset
as a baseline to evaluate the Beta parameters α0 and β0,
assuming θOB as a random variable with uniform density
distribution f (θOB ) representing the fraction of people that
visited the emergency department with a chief complaint. To
evaluate the functional performance of the proposed system,
the authors compared the results obtained from a real 12-
week dataset from a set of emergency departments in Alleg-
heny Country, Pennsylvania in 2001 and 2002, with the con-
trol chart method. The activity monitoring operating charac-
teristic (AMOC) curves show that the proposed Bayesian
univariate (BU) approach has relatively better functional
performance when using baseline periods in which the
window size w = [2 − 10] weeks.

In our previous work [9], we propose a distributed intru-
sion detection platform able to detect any kind of attack/

intrusion that uses the Internet connectivity to reach their
targets, such as any variation of denial-of-services (DoS)
attacks, worms and network scanning. The proposed archi-
tecture leverages the scope of the BGP network to intercon-
nect IDS members operating at the autonomous systems
of the Internet (AS), enabling them to cooperate with each
other by sending network alarms as a federation. A federa-
ted IDS member traversed by a supposed malicious flow
detects it as a potential intrusion and advertises a BGP
FlowSpec updating message containing the traffic informa-
tion (features) [21]. Each intermediate AS that receives the
update message relays it immediately, causing it to travel
through the BGP network until it reaches the destination
AS. At the destination AS, all messages arriving frommulti-
ple sources are correlated and combined to support further
protection measures, depending on their resulting degree
of belief. The overall functional performance of the DIDS
platform depends on the individual performance of each
federated IDS and is evaluated based on detection met-
rics modeled by combining the Dempster-Shafer Theory
of Evidence with Bayesian inference. In those models, the
positive-prediction value (PPV) related to each originating
IDS assigns a belief mass to its BGP advertisement. At the
target AS, the correlated belief masses are mathematically
combined to yield the likelihood parameter in the Bayesian
equation. However, although the detection numbers from
the sensory surface continuously update the likelihood para-
meter, the prior knowledge regarding the empirical detec-
tion probability of the DIDS keeps flat. Besides the unrealis-
tic scenario of training the whole DIDS platform using suffi-
ciently large and diversified datasets, this empirical method
does not consider the autonomy of the AS administrator to
use state-of-art IDS members, for example, the ones that
progressively improve their own functional performance by
learning with the data, as proposed in [22, 23].

The modeling approach proposed in this paper leverages
the multi-shaping nature of the Beta distribution to balance
the likelihood parameter of the metric models concerning
the current intrusion evidence. This approach fits better the
practical scenario, in which the detection probability of each
individual IDS that composes the DIDS federation changes
continuously instead of keeping flat over time. Therefore,
instead of modeling adjacent aspects related to the overall
performance, as proposed in [16], or relying just on
empirical results from historical data, as suggested in [9,
20], we present a modeling approach that uses the intrusion
evidence as input parameters to compose the prior probabi-
lity. Our main contribution in this paper relies on proposing
a simple analytic framework based on the Beta distribution
as a prior probability to evaluate the overall functional
performance of a consensus-based DIDS that reduces the
dependence over dataset training.
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3 Architecture review

The same native ubiquitous connectivity offered by the
Internet that enables cyberattackers to launch a malicious
attempt against any target from anywhere also paves
the way for the collaboration-based distributed intrusion
detection system proposed in [9]. The system proposed
in our previous paper works like an intrusion detection
network, where IDS members placed in every autonomous
system (AS) collaborate with each other by sharing specific
information about a potential malicious flow that traverses
them towards a target AS. Each intrusion advertisement
from an IDS member traversed by the malicious flow travels
throughout the BGP network from its source AS and arrives
at the target AS, where it is correlated and combined with
other correlated messages to support a protection measure.
The longer the AS-path of a malicious flow, the bigger the
chances for at least one IDSmember in the AS-path to detect
it as an intrusion. If one considers a coordinated attack from
multiple sources spread across the worldwide Internet, the
detection probability exponentially increases.

The proposed architecture assumes each AS has at
least one federated IDS, which is autonomously con-
trolled by the AS administrator and can be of any type (e.g.,
an anomaly-based or signature-based like Snort) with diffe-
rent functional performance. The heterogeneity and autonomy
of IDS members placed in their respective ASes increase the
chances of detecting a zero-day attack, since it may have been
identified as an attack earlier in a different place. Besides that,
the federated IDSes are also assumed independent of each
other. Therefore, any individual IDS that fails does not signi-
ficantly compromise the overall DIDS performance. Further-
more, the multiple detection messages from the DIDS fede-
ration correlated and combined at the target AS corroborate
the intrusion hypothesis, reducing the false-positive rate and
increasing the true-positive rate of the platform as a whole.

The lightweight self-organized BGP network intercon-
nects all the autonomous systems (AS), including their res-
pective distributed IDSes, creating a global intrusion detec-
tion federation. The twelve flow attributes of the standard-
ized BGP Flowspec framework normalize the communica-
tion among the IDS members, without restricting the flow
characterization, which facilitates the correlation process at
the destination AS (Fig. 1).

To evaluate the functional performance of the DIDS plat-
form described in [9], we proposed an analytic model based
on combining the belief masses of the ND advertisements
into consolidated information to support further protection
measures. However, using a flat positive rate empirically
obtained from dataset rounds to model the prior knowledge
about the system’s capacity to detect an intrusion disregards
the trade-off between the federation size and the positive
precision of IDS.

4Modeling framework

As mentioned in Section 2, the modeling approach presen-
ted in our previous work [9] proposes to use the Dempster-
Shafer framework for combining the belief masses of the
correlated detection messages from the distributed IDSes
about a potential intrusion in progress. The combined result
enters the Bayesian statistical models as the likelihood para-
meter to assess performance metrics. The belief mass (or
basic probability assignment) concerning each message that
arrives to be combined at the destination AS is paramete-
rized using the positive-prediction value (PPV) of the source
IDSes, which is related to their ability to alarm in case of
a real intrusion in progress. This modeling approach is ca-
pable of capturing both the impact of the number of messa-
ges agreeing that there is an intrusion and the average pre-
cision of each IDS member. However, the prior knowledge
that measures the DIDS ability to detect an intrusion, which
can be true or false, depends only on the individual positive
rate (PRav) of each federated IDS, which is empirically
evaluated by averaging two different datasets trained in the
same standardized IDS, namely Snort.

PRav = 1

JNF

NF∑

i=1

J∑

j=1

#T Pij + #FPij

#T Pij + #FPij + #T Nij + #FNij

(1)

In Eq. 1, NF refers to the total number of IDS members
of the detection federation and J is the number of datasets
used to train our chosen IDS baseline (Snort).

Although the performance metrics in [9] present a
coherent behavior considering the federation size and the
number of intrusion evidence, using just two datasets is not
consistent enough to evaluate the detection performance of
the whole DIDS platform. Also, the flat prior knowledge
from the positive rate does not consider the possibility of
changes in the IDS performance over time. By the way,
most modern IDSes use artificial intelligence and machine
learning techniques to improve their detection algorithms
using their own traffic.

This section proposes a different modeling approach ai-
ming to highlight the numerical impact of the detection evi-
dence and reduce the model’s dependence on the dataset
rounds of training. Although from a classical perspective it
is unacceptable to place probability distributions on param-
eters (frequentist point of view), we propose a Bayesian
approach to estimate the prior, in which the model parame-
ter is represented with a probability distribution, whereas the
data already observed are considered as fixed numbers [24].
However, unlike the maximum likelihood (ML) and maxi-
mum a posterior (MAP) approaches, whose objectives are to
maximize the likelihood or the posterior with the data [25],
we propose a balanced semi-informative prior as a random
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Fig. 1 Distributed detection
architecture with 10 ASes, each
of them containing at least one
federated IDS member. A
coordinated attack is launched
from ASs 1, 2, and 5 towards a
target placed at AS 10. Four
IDSes along the AS-paths detect
the malicious flows and
advertise a FlowSpec update to
the BGP network AS1 AS10

AS3

AS8AS5AS2

AS4 AS7

AS6 AS9

Flow-3

Flow-2

Flow-1

BGP
Network

Target

Intrusion
sources

variable, blending historical and current data to allow per-
formance model to learn with time. Figure 2 gives a
graphical view for a better understanding of the proposed
approach.

In Fig. 2, the statement about the occurrence of intrusions
can be modeled by a Bernoulli random variable I , where
Pr(I = 1) = 1 − Pr(I = 0) is the probability of there
is a real intrusion ongoing in the network at a time instant
t . Similarly, let Ui an individual Bernoulli random variable
representing the detection statement of an IDSi , as part of
the DIDS federation, where Pr(Ui = 1) = 1 − Pr(Ui = 0)
is the probability of an IDSi to detect an intrusion.

TPRij (True-Positive Rate) is a detection performance
metric that measures the IDS sensitivity to detect a real
intrusion. It can be evaluated by rating the number of

true-positive alarms issued by IDSi (#TP) over the number
labeled intrusion flows in the dataset j . In other words,
considering the total amount of malicious flows present in a
dataset j (#T Pij + #FNij ), TPRij measures the capacity of
an IDSi to detect these intrusive flows.

T PRij = #T Pij

#T Pij + #FNij

(2)

In Eq. 2, both #T Pij and #FNij can be evaluated based
on the confusion matrix CMij . While #T Pij is the number
intrusions correctly alarmed by the IDSi , #FNij is the
number of real intrusions not detected by IDSi , trained using
the dataset j .

Assuming j a sufficiently diversified and voluminous
dataset, and identical independent IDSes in the federation, it

F
U
S
I
O
N

Destination

BGP
Network

Fig. 2 Graphical model representing the intrusion hypothesis (I = 1) the ND detection hypothesis ({Ui}ND

i=1 = 1)
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is possible to aproximate both PRi and TPRi to their
statistical model.

PRi = Pr(Ui = 1) (3)

T PRi = Pr(Ui = 1|I = 1) (4)

Using the Bayes framework, we can rewrite TPRi from
Eq. 4 into Eq. 5.

T PRi = Pr(Ui = 1|I = 1) = Pr(I = 1|Ui = 1) × Pr(Ui = 1)

Pr(I = 1)
(5)

Equation 5 denotes the detection metric named true-
positive rate of an averaged standardized IDSi in the detec-
tion federation, and can be interpreted as the posterior
probability, according to Eq. 6.

Posterior = Likelihood × Prior

Evidence
(6)

Comparing Eq. 5 to Eq. 6, Pr(Ui = 1) = p plays a
role of the prior probability, which represents the previous
belief about the positive detection capacity of the IDSi ,
before taking into account any data evidence. In Bayesian
inference, it is crucial to the prior probability to fit the
likelihood, according to the system behavior. Otherwise, the
posterior probability can turn out meaningless values. That
is, while a very informative prior probability can pull the
posterior outcome to meaningless area, a non-informative
prior increases the variance of the posterior evaluation [26].

The modeling approach proposed in this paper focus
on forming a semi-informative prior as a function of the
detection scenario. In other words, instead of using a
flat prior probability p = PRav , which depends on the
unthinkable task of constantly training each federated IDS
using the same dataset, let p a random variable Θ ∈ [0, 1]
with FΘ(θ) ∈ [0, 1].

Assuming X ≤ K be random variables representing the
number of IDSes that detected an intrusion and the number
of IDSes traversed by the malicious flow, respectively, the
likelihood Pr(X = ND|K = NI , Θ = θ) can be written in
Eq. 7.

Pr(ND|NI , θ) =
(

NI

ND

)
θND(1 − θ)NI −ND (7)

As one can see, Eq. 7 has a binomial shape. Therefore,
choosing a Beta distribution as the prior probability only

changes the distribution parameters (hyper-parameters) due
to its binomial conjugate property. However, defining how
informative the prior should be depends on adjusting its
shape parameters α and β accordingly. In our case, we
focus on the number of correlated messages to be combined
ND and on the proportional size of the federation NI ,
which represent the real detection scenario at the attack
target. The Beta probability density function fΘ(θ) follows
next.

fΘ(θ) = dFΘ(θ)

dθ
= 1

B(α, β)
θα−1(1 − θ)β−1 (8)

Where, B(α, β) = Γ (α+β)
Γ (α)Γ (β)

According to Bayes theorem, the posterior Pr(θ |ND, NI )

is

Pr(θ |ND, NI ) = Pr(ND, NI |θ)fΘ(θ)

Pr(ND, NI )
(9)

Joining Eqs. 7 and 9, we have the following expression
for the posterior probability.

Pr(θ |ND, NI ) =
(
NI

ND

)
θND(1 − θ)NI −NDθα−1(1 − θ)β−1

B(α, β)
∫ 1
0 Pr(ND, NI |θ)fΘ(θ)dθ

(10)

Developing the integral in the denominator of Eq. 10, we
have

∫ 1

0
Pr(ND,NI |θ)fΘ(θ)dθ =

∫ 1

0

1

B(α, β)

(
NI

ND

)
θND+α−1(1 − θ)NI −ND+β−1dθ

= 1

B(α, β)

(
NI

ND

)
B(ND + α,NI − ND + β)

Coming back with this last result in Eq. 10

Pr(θ |ND, NI ) = θND+α−1(1 − θ)NI −ND+β−1

B(ND + α, NI − ND + β)
(11)

Taking the marginal concerning ND , we have the
posterior

Pr(θ |NI ) =
NI∑

x=0

Pr(θ |ND = x,NI )Pr(ND = x|NI )

= θx+α−1(1 − θ)NI −x+β−1

B(x + α, NI − x + β)
Pr(ND = x|NI ) (12)



Ann. Telecommun.

Considering the NI IDSes traversed by the intrusion
flow, we can estimate the detection probability p as a prior
in Eq. 5 taking the expected in Eq. 12.

EPr(θ |NI )(Θ) =
∫ 1

0
θPr(θ |NI )dθ

=
∫ NI∑

x=0

Pr(ND = x|NI )
θx+α(1 − θ)NI −x+β−1

B(x + α, NI − x + β)

=
NI∑

x=0

Pr(ND = x|NI )

∫ 1
0 θx+α(1 − θ)NI −x+β−1dθ

B(x + α, NI − x + β)

=
NI∑

x=0

Pr(ND = x|NI )
B(x + α + 1, NI − x + β)

B(x + α, NI − x + β)

=
NI∑

x=0

Pr(ND = x|NI )
x + α

NI + α + β

= 1

NI + α + β

NI∑

x=0

Pr(ND = x|NI )(x + α)

= 1

NI + α + β

(
α +

NI∑

x=0

Pr(ND = x|NI )x

)

= α + E(ND)

NI + α + β
(13)

E(ND) can be evaluated as a fraction of IDSes traversed
by a malicious flow (NI ) that detected an intrusion with
probability PRav .

E(ND) = NI .PRav (14)

In Equation 14, PRav is just the mean result obtained
from two dataset rounds of training over the same baseline
IDS (Snort). What we need is to estimate the posterior
probability EPr(θ |NI )(Θ) that will replace the prior p in
Eq. 5.

p ≈ EPr(θ |NI )(Θ) = α + NI .PRav

NI + α + β
(15)

Equation 15 updates the prior knowledge from a dataset
training that measures the capacity of a supposed averaged
IDS in the federation to detect either correctly or incorrectly
an intrusion p = Pr(Ui = 1) with the current detection
scenario, given by the number of detection messages
received at the target (ND) and the DIDS platform size (NI ).

4.1 Performancemetrics

The true-positive rate of the DIDS platform (TPRDIDS)
measures the positive detection accuracy of the DIDS fede-
ration as a whole. In other words, the higher the TPR value,
the bigger the number of detectable intrusions by the DIDS

platform. As a posterior probability, the TPRDIDS model
proposed in [9] considers the mean positive-prediction value
(PPVav) of an IDS member as the belief mass of each
arriving BGP message to be combined at the destination. In
the same work, the prior probability, related to the previous
knowledge about the DIDS capacity to detect (correct or
incorrect) an intrusion, is obtained according to Eq. 1. That
is, by averaging the confusion matrix from multiple dataset
trainings in the same an standard IDS (Snort).

T PRDIDS = Pr(U = 1|I = 1)

Pr(I = 1)

≥
[
1 − (1 − PPVav)

ND

]
.
[
1 − (1 − PRav)

NI

]
(16)

Using the same probabilistic approach it is also possible
to evaluate the false-negative rate (FNR) of the DIDS plat-
form, which means the DIDS capacity to do not alarm nor-
mal traffic.

FNRDIDS = 1 − T PRDIDS = Pr(U = 0|I = 1)

Pr(I = 1)
=

≥ 1 −
[
1 − (1 − PPVav)

ND

]
.
[
1 − (1 − PRav)

NI

]
(17)

Equation 16 denotes TPRDIDS as a posterior probability
of the DIDS platform to detect an intrusion, given that there
is a real intrusion occurring at some time2. The first right-
side term is the likelihood, as the probability of having at
least one correct detection among the ND arriving messages
from the IDS members. Likewise, the second right-side
term denotes the flat empirical prior knowledge, as the
probability of having at least one positive detection alarm
(correct or incorrect) among the NI IDS members traversed
by the malicious flow. Using the balanced prior probability
model proposed in Section 4, that is, updating PRav with the
intrusion evidence of the detection scenario, we can rewrite
Eq. 16 using our prior estimation calculated in Eq. 15.

T PRDIDS = 1 − FNRDIDS

≥
[
1 − (1 − PPVav)

ND

]
.
[
1 − (1 − p)NI

]
(18)

Likewise, we can rewrite the performance metric that
measures the false-positive rate of the entire DIDS platform
(FPRDIDS) using the same prior probability proposed in
Eq. 15.

FPRDIDS = 1 − T NRDIDS

≥ (1 − PPVav)
ND .

[
1 − (1 − p)NI

]
(19)

2The denominator of the Bayes inference used to model the detection
performance metric Pr(I = 1) was assumed equals 1
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Fig. 3 Prior probability approaches to model the previous knowledge
regarding the DIDS platform capacity to detect an intrusion Pr(U =
1). In this case, the value of PPVav is fixed at 0.459. This number
was obtained by averaging the confusion matrix presented in [28, 29].

a Flat prior probability model from [9] as a function of the mean pos-
itive rate PRav . b Balanced prior probability model from Section 4 as
a function of the mean positive rate PRav

5 Comparative analysis

In this section, we compare the functional performance
resulting from the models proposed in [9], which uses a flat
empirical positive rate representing the previous knowledge
about the detection probability, with the results obtained
from the modeling approach presented in Section 4 that
dynamically updates the prior probability with the numbers
obtained in each detection scenario. Our goal is to analyze
the main differences between the two modeling proposals
and discuss their adherence with respect to the practical
scenario described in [27], in which the number of intrusion
messages from the sensing surface matters to evaluate the
detection performance of the whole DIDS platform.

Figure 3 illustrates the behavior of the two prior
probabilities models considered in this paper as a function
of the mean positive detection rate of a standard IDS PRav .
As part of the Bayesian models for evaluating the functional
performance of a DIDS, the prior probability denotes the
previous knowledge regarding the DIDS capacity to detect
an intrusion, which can be true or false. Figure 3a shows a
single curve increasing exponentially with PRav , as a result
of the flat prior probability model proposed in [9] that does
not consider the number of detection messages that arrive
to be combined at the target AS ND . On the other hand,
Fig. 3b shows six different curves, according to the number
of correlated BGP messages that can be combined at the
destination AS ND . In other words, the bigger the number
of detection messages at the destination, the bigger the prior
knowledge significance into the Bayesian metric model
(posterior). The adaptable behavior for the prior probability

proposed in this paper plays the role of balancing the
detection metric, emphasizing the arriving data as intrusion
evidence.

In order to ease the overall detection analysis, we
focus our attention on the true-positive (TPR) and false-
positive rates (FPR) which also grounds the evaluation of
the remaining performance metrics, such as false-negative
(FNR) and true-negative rates, respectively.

Figure 4 shows the TPR and FPR curves using the same
input parameters. As one can see, regardless of the modeling
approach, the detection metrics behave as expected, impro-
ving as both NI and ND increase. Figure 4a shows the TPR
performance behavior using the flat model proposed in [9],
where the prior knowledge regarding the positive accuracy
of the DIDS platform is evaluated empirically, by averaging
the positive rate (PRav) from two dataset trainings [28, 29].
On the other hand, Fig. 4b shows the TPR curve using the
balanced approach proposed in this paper, in which the prior
knowledge is dynamically updated based on the detection
numbers ND and NI .

As one can see, although the two TPR and FPR curves
perform quite similarly among them, there are subtle differ-
ences regarding their behaviors, where the most remarkable
one is when ND = 1. In this case, both TPR (Fig. 4d) and
FPR (Fig. 4c) are flatter than their respective curves shown
in Fig. 4a and c. In other words, even being exponentially
related to the federation scale (NI ), the detection performance
does not increase too much because ND = 1 means just a
single piece of intrusion evidence at the destination AS.

Figure 5 compares the TPR curves from the two models
considered in this paper, as a function of PPVav , for
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Fig. 4 True-positive and false-positive rates analysis of the over-
all DIDS platform (TPRDIDS ) as a function of the ND and NI .
In this case, the values of PPVav and PRav are held at 0.459 and
0.322. These numbers were obtained averaging the confusion matrix

presented in [28, 29]. a TPR model using the at prior proposed in [9].
b TPR model using the balanced prior proposed in Section 4. c FPR
model using the at prior proposed in [9]. d FPR model using the
balanced prior proposed in Section 4

Fig. 5 True-positive rate analysis of the overall DIDS platform
(TPRDIDS ) as a function of the PPVav , for different values of and
ND . In this case, the PRav value is fixed at 0.322 [28, 29]. a TPR

metric, considering the at prior model proposed in [9]. b TPR metric,
considering the balanced model proposed in Section 4
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Table 2 TPR and FPR results from the models proposed in [9]
and Section 4 (holding PRa = 0.322 and PPVav = 0.459) for
ND = Q = 6 with the numerical results presented in IDN [16] and
in [27] (practical testbed)

Metric Model [9] Model Section 4 IDN [16] Testbed [27]

TPR 0.88 0.97 0.95 0.98

FPR 0.022 0.025 0.035 0.020

different values of ND . As can be observed, the detection
performance curves presented in Fig. 5a and b are quite
similar and behave both like our expectations, that is,
increasing fast as PPVav and ND also increase. However,
while the TPR metric presented in Fig. 5a performs better
for ND = [1, 3], Fig 5b outperforms the previous for ND =
[4, 6].

The modeling framework proposed in this paper can also
be used to assess the functional performance metrics of
other collaborative DIDS approaches. For example, we can
assume the number of acquaintance interactions among IDS
agentsQ from the intrusion detection network system (IDN)
proposed in [16] as being the number of correlated messages
to be combined ND as in our analytic model. Table 2 puts
together the numerical results obtained from the two models
considered in this paper and the performance metrics from
the IDN system proposed in [16] regarding the practical
outcomes from the testbed presented in [27].

The numerical values arranged in Table 2, shows that
the TPR and FPR outcomes from the model proposed in
Section 4 of this paper are closer to the system proposed
in [16] as well as to the practical numbers obtained from
Testbed [27]. An additional assessment of the modeling
performance of the proposed approach can be made by
comparing the numerical results in Table 2 with Fig. 5a
and b. While the balanced model tends to be one in the
best detection situation, the previous flat model does not
meet TPR values above 0.9 as the ones from IDN [16]
and Testbed [27] depicted in Table 2. It can be explained
by considering the dynamic behavior of the Beta function,
which emphasizes the TPR improvement for positive
detection situations α > β.

6 Conclusion and future works

The main points that credence the DIDS approach as an
evolution regarding the typical IDS architectures are (i)
on improving the functional performance by extending the
detection surface and exploiting detection consensus, and
(ii) on eliminating a single point of failure related to the
perimeter-based monolithic approach of typical IDSes.

Expanding the detection surface means increasing the
number of federation members and encouraging their

autonomy and heterogeneity. Likewise, exploiting detection
consensus means using the multiple intrusion evidence from
the federated agents to support a security decision, based
on the belief degree of the combined information. In this
regard, although the results presented in Section 5 show a
lower performance for ND = [1, 3] concerning the previous
modeling approach presented in [9], the results obtained
from the proposed model, in which the data received
from sensing agents balance the prior knowledge about the
detection rate of the DIDS platform, are closer to the DIDS
practical scenario shown in [27]. For further works, we
plan to compare the performance evaluation results obtai-
ned from different analytic models with a practical DIDS
platform, composed by the same number of IDS agents,
preferably spread network-wide. It is also part of our plans
to analyze the DIDS functional performance using federated
learning approaches.
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