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Abstract: The Internet of Things (IoT) is the next step of the Internet evolution and it is paving the way for the devel-
opment of Cyber-Physical Systems (CPS). It will enable the development of a plethora of new systems and
applications. The massive, ubiquitous spread of interconnected IoT devices has increasingly exposed the vul-
nerability of data and related applications in an unprecedented way. If the security of any component in such
systems gets compromised, an associated data leak may cause serious threats to privacy, material losses, and
even put people’s lives at risk. Therefore, studies on IoT security aspects have become increasingly important.
This paper presents a proposal to deal with the still open issue related to trust aspects of IoT systems. The
key idea consists of a two-level approach to simultaneously consider application and network characteristics,
in which trust is modeled by combining a relative entropy measure of device’s data rate (at the low level), and
a reputation of a device provided by distributed-ledger (at the high level). Numerical results show the effec-
tiveness of the proposed approach in isolating anomalous/untrusted devices based on their acquired reputation
and on the respective changes in data rate behavior.

1 INTRODUCTION

The Internet of Things (IoT) (Atzori et al., 2010) rep-
resents a new stage in the evolution of the Internet,
extending network communications to any type of in-
telligent object (thing). With an estimate of approxi-
mately 30 billion connected things by 2025 (Statista,
2021), the spread of IoT paves the way to a myriad of
applications that can significantly impact the current
society’s way of life. Considerable benefits can be ob-
tained, for instance, in the areas of healthcare, smart
cities, smart home applications, intelligent transporta-
tion systems, and many other use cases based upon
IoT devices (Casadei et al., 2019). The IoT will also
enable the interoperability of heterogeneous technolo-
gies, through unprecedented data acquisition and ex-
change among diverse peer devices.

Taking advantage of the huge amount of data that
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can be collected by associated devices, several exist-
ing and envisaged IoT applications should also pro-
vide improvements to a variety of decision-making
processes. However, harvesting such benefits will
also imply tackling the task of providing security to
each of the involved devices. In fact, achieving the
full potential of IoT applications and services essen-
tially depends on the trustworthiness of information
and the protection of private data, especially in highly
sensitive application domains such as healthcare, for
instance. In IoT systems, if the security of any com-
ponent becomes compromised, a data leak may cause
serious privacy threats, bring about material losses,
or even jeopardize people’s lives. For example, a
tampered sensor may expose private data, or deliver
wrong measures for a patient’s heart rate in health-
care IoT applications, leading to wrong-prescription
errors. In another example, the malfunction caused by
the disruption of any data supply-chain used to con-
trol traffic lights in an intelligent transport system may
cause the occurrence of vehicle crashes. Thus, in this
context, besides financial loss, a security flaw can lead
to a violation of data privacy and, in the worst cases,
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it may even incur physical damage to human beings.
Therefore, new requirements and challenges need to
be considered in the design of IoT systems and appli-
cations, especially in terms of security and trust (Pal-
iszkiewicz, 2018; Sicari et al., 2015; Yan et al., 2014;
Macedo et al., 2019; Bertino, 2019; Dedeoglu et al.,
2019; Junior and Kamienski, 2021).

In this paper, we leverage the work proposed in
(Macedo et al., 2020) by presenting a comprehensive
evaluation and improving the model details. In such
proposal, trust is modeled by gathering data from both
the network and the application layers, which stand
respectively for the Low Level and the High Level.
For the High Level, the proposed model assumes the
use of a distributed-record based on blockchain. This
approach aims to provide an initial trust to devices
that do not know each other previously. A relative en-
tropy measure is adopted for the Low Level in order
to capture data rate patterns changes. The key idea
is to use the relative entropy of the data rate between
communicating IoT devices to monitor the network
behavior in order to detect anomalies. Additionally,
it is also assumed a temporal decay of trust measured
values to deal with the usual dynamism of IoT de-
vices and their opportunistic interactions. The major
advantage of such an integrated approach is that it ex-
ploits not only application information, but also net-
work information to infer how much a device should
be trusted. Different from our previous work (Macedo
et al., 2020), we present: (i) a more detailed modeling
with specific formulas according to the different cases
of trust calculation; and (ii) more comprehensive re-
sults that show the effectiveness of the approach with
different levels of malicious devices within the net-
work.

The rest of this paper is organized as follows. In
Section 2 we discourse about related works, present-
ing a comparative analysis between them and this pro-
posal. Section 3 presents the two-level trust proposal
and Section 4 its modeling. In Section 5 the experi-
mental evaluation results are presented together with
some discussions. Finally, Section 6 concludes the
paper and foresees future work.

2 RELATED WORK

Dealing with security aspects is a major challenge in
IoT (Stankovic, 2014; Atzori et al., 2010; Abomhara
and Køien, 2014; Al-Fuqaha et al., 2015; Sicari et al.,
2015; Prokofiev et al., 2017; Khan and Salah, 2018;
Zhang et al., 2018; Macedo et al., 2019; Fortino et al.,
2020b; Delicato and Pires, 2020), mainly because
of the heterogeneity between the multiple compo-

nents and platforms IoT interconnects, the resource-
constrained devices, and the wireless communication
technologies. In particular, the problem of assigning
trust metrics to IoT devices is of a paramount im-
portance and is currently considered as an open is-
sue (Sato et al., 2016; Liu et al., 2016; Paliszkiewicz,
2018; Din et al., 2018; Sfar et al., 2018; Macedo et al.,
2019; Fortino et al., 2020a; Babar et al., 2021; Wang
and Zhang, 2016).

Fortino et al. (Fortino et al., 2019) designed a
framework in which every IoT device was associ-
ated with a software agent capable to exploit its so-
cial attitudes to cooperate as well as to form com-
plex agents social structures. The authors consider
the reputation aspect by using a blockchain (Chris-
tidis and Devetsikiotis, 2016; Zhang and Zhou, 2020)
implementation. In their approach, devices can use
network services according to their reputation pro-
vided by blockchain. In (Fortino et al., 2020b) they
also consider social aspects to provide a framework
resilient to malicious activities.

In (Tang et al., 2019), Tang et al. use the passport
analogy to propose a decentralized trust framework
for cross-platform collaborations using blockchain
technology. The authors highlight that an overall con-
sensus framework for trust remains to be developed.
In our approach, we focus on recording the devices’
identities in blockchain to build devices’ reputation
(initial trust), but we improve such initial trust with
information from the data rate behavior.

In (Hongjun et al., 2008), authors use Informa-
tion Theory to build trust among devices. They rep-
resent the relationships among devices with a direc-
tional graph and compute the entropy of the capabil-
ity of a device in performing an action. This way, they
can detect malicious devices in the network. We also
consider Information Theory in our work, but with a
different perspective, focusing on the network level
instead of the application level.

Khan et al. (Khan et al., 2017) propose a trust-
based approach for managing the reputation of every
device of an IoT network based on Routing Protocol
for Low-Power and Lossy Networks (RPL). The ap-
proach generate the routing rules based on the rep-
utation values of the devices. Authors’ approach
shows the ability to detect and also isolate malicious
nodes from the network, resulting in better network
resilience, as well as less number of misbehaving de-
vices (bad devices) identified in the network after ev-
ery RPL round. Our approach is independent of the
routing protocol, since it relies on device to device
communication to infer trust values.

Authors in (Caminha et al., 2018) introduce a
smart trust management method based on machine
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learning which automatically assesses IoT trust by
evaluating service provider attributes. In (Bernabe
et al., 2016), authors use fuzzy logic to provide an
end-to-end security solution through a lightweight au-
thorization mechanism and a novel trust model that
has been specially devised for IoT environments.

In (Zhou et al., 2018), authors consider an
Identity-Based Encryption implementation together
with a blockchain implementation. Authors split the
devices in the chain to complete user authentication
and private key protection. The results show the fail-
ure probability is stabilized with the number of cycles
during which a device operates. We consider a two-
level approach with not only application characteris-
tics to infer trust values, but also network characteris-
tics.

Authors in (Wang et al., 2021) considered build-
ing a distributed trust system for cooperative learning
in edge computing. They propose a trusted consen-
sus scheme for multi-party collaborative learning of
edge artificial intelligence using a blockchain-based
approach. Through experiments, the authors show
that their proposal can be applied to such contexts
with more safety and efficiency by reducing the prob-
ability of an attacker being chosen as the leader of the
considered consensus protocol.

In (Hasan et al., 2019), authors assess the perfor-
mance of several machine learning models to predict
attacks and anomalies on the IoT systems accurately.
Their study showed that the system obtained 99.4%
test accuracy for Decision Tree, Random Forest, and
ANN with a slightly better performance in other met-
rics for Random Forest.

The aforementioned proposals emphasize the im-
portance and relevance of building trust-based ap-
proaches to provide security in the communication
among IoT devices. In this paper, besides present-
ing a trust model that combines blockchain and In-
formation Theory techniques, the key contribution of
our work is the double perspective of both applica-
tion level and network level, which allows capturing
the dynamics of data rate behavior of devices and pro-
vides a comprehensive metric. Hence, our approach
provides a more comprehensive trust metric that can
deal with the particularities of IoT devices’ data rate
patterns.

3 TWO-LEVEL TRUST
PROPOSAL

To perform device trust assignment, we consider an
IoT system composed of three tiers, namely, the
Things tier, the Cloud tier and an intermediate Edge

tier (Li et al., 2017). Such an organization is driven
by the recent paradigm of Edge Computing (Shi et al.,
2016; Abbas et al., 2018), which aims to move (part
of) computing, processing, and storage resources to
the edge of the network, rather than centralizing them
in remote cloud data centers. Considering such or-
ganization for an IoT system, we envision the High
Level implementation at the Edge Tier to provide de-
vices with lower latency than if it was at the Cloud
Tier. We consider using blockchain since neither the
Edge nor the Cloud Tiers provide the characteristics
of immutability, traceability, and tamper-proof by de-
sign, which are native to blockchain platforms. Fig-
ure 3 illustrates a complete scenario considering both
High and Low Levels in a three-tier architecture.

We propose modeling trust as a composition of ap-
plication (High Level) and network (Low Level) char-
acteristics that can be observed in a scenario with a
device communicating with another device. We claim
that, by using such characteristics, the device can cal-
culate how much it trusts in the other device. The net-
work characteristic that we consider is the data rate
behavior of a device, while the application charac-
teristic is the reputation that the identity of a device
presents on the community (given by blockchain). In
such a scenario, two devices at the Thing Tier do not
know each other in a first contact, having little or no
information required to infer an initial trust to start
communicating. Then, to acquire the respective initial
trust, the devices rely on the High Level to properly
obtain the reputation of the related device’s identity.

As Figure 1 depicts, initially, each IoT device
queries the reputation (initial trust) of the other de-
vice’s identity in a distributed-ledger-based infras-
tructure, which is at the High Level of our approach.
Once the minimum initial trust is acquired, the com-
munication can normally start over the Internet infras-
tructure. Another case of usage of the High Level
is when the trust value drops below a certain prede-
fined minimum trust (threshold) and the device needs
to acquire again the last reputation value from the
blockchain infrastructure. In particular, such thresh-
old must be provided by the respective IoT appli-
cation, depending on its specific security require-
ments. Applications with less stringent requirements
will adopt lower thresholds, while applications more
restrict will only accept high values of trust (high
threshold). For analysis proposes, readers can notice
in Section 5 that we considered a strict IoT applica-
tion with a minimum trust of 0.8.

As the communication between the devices hap-
pens, the Low Level takes place (Figure 2). One de-
vice calculates the relative entropy of the other de-
vice’s data rate (and vice versa) and uses this infor-
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Figure 1: Two cases of the usage of High Level: when the first contact is established and an initial trust value needs to be
acquired; and when the trust value drops below a predefined threshold (minimum trust).

Figure 2: Example of the usage of Low Level: each device analyses the incoming data rate of the other device and builds its
trust according to the relative entropy of such data rate.

mation to adjust the value of trust in the sender device
over time. If the sender device starts behaving ab-
normally, this will negatively affect the trust and may
cause communication to terminate if it decreases be-
yond a previously established threshold. In our case,
an abnormal behavior means any data rate pattern that
diverges from the estimated data rate distribution. If
the communication is over, a temporal component re-
duces the trust value until it reaches the point that the
devices will need to query the blockchain again and
restart the whole process.

4 TRUST MODELING

In order to present the mathematical model, which can
be used to obtain our proposed trust metric, let X ji rep-
resent the data rate (in Bytes per second – Bps) that a
device j receives from a device i, for any given pair
of devices in an IoT network. X ji is a non-negative,
integer random variable that assumes values in the in-
terval S ji = [0,∆,2∆,3∆, ...,Rmax

ji ], where ∆ is a pos-
itive integer and Rmax

ji is the maximum received data
rate. Thus, after observing sample values of the ran-
dom variable X ji, we obtain the respective sample dis-
tribution

P[X ji = x] , pX ji(x), x ∈ S ji,

with which we derive information metrics based on
Shannon’s Information Theory formulas (Shannon,

1948), as we discuss afterward. More details about
the samples used to obtain X ji will be discussed in
Section 5.

Let T R ji be the trust of device j in device i. The
trust values range from 0.0 (zero), which is the min-
imum trust value (or simply no trust), to 1.0 (one),
which is the maximum value of trust. The T R ji is
based on the following three components:

1. T R ji is initially computed based on the trust of
the i′s identity, which is obtained from its repu-
tation stored in a public-permissioned distributed
ledger (e.g., blockchain), expressed by C1 (Equa-
tion 1). Such initial reputation values represented
by the transactions in blockchain are populated
through successfully past established communica-
tions, which the devices report at the end of an
interaction. The number of confirmations a trans-
action has on the blockchain gives the reputation
value provided by this component. We envision
the implementation of full nodes at the Edge Tier,
and not at the Things Tier, given that the IoT de-
vices are known as being resource-constrained.

C1 = # of confirmations the i’s identity has (1)

To establish consensus on a blockchain, it is es-
sential to have a significant number of nodes (Pal-
iszkiewicz, 2018). In addition, blockchain itself
still has limitations, such as the transaction vali-
dation time and computational power required to
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Figure 3: Trust scenario of two-level approach considering a tree-tier architecture.

form full nodes. Such aspects might incur an over-
head in the communication between IoT devices.
To overcome this issue, we propose building a
blockchain infrastructure that can handle various
application requirements and levels, from local
applications associated with a local blockchain, to
a global application with a blockchain in a large
scale. In particular, we consider a consensus pro-
tocol based on proof-of-stake, which has the po-
tential to better fit this context and can be imple-
mented using, for instance, the Tezos Blockchain
(Goodman, 2014).
For modeling purposes, we chose for this com-
ponent to follow a Gaussian distribution with pa-
rameters mean µ = 1 and variance σ2 = 1 to have
samples of the number of confirmations normally
distributed.
The more confirmations a transaction has, the
harder it is to tamper such a transaction. Thus,
based on the number of confirmations we can con-
sider the transaction is strongly agreed upon by
blockchain members and the tampering probabil-
ity can be considered negligible;

2. T R ji is also influenced by the relative entropy of
the data rate, which changes when the current
data rate behavior of the device deviates from the
estimated data rate behavior due to any type of
anomalous condition. The estimated data rate dis-
tribution X ji can be obtained through an initial ob-
servation of the data rate behavior of the peering
device, in which the device learns the “true” dis-
tribution. To obtain such metric, we discuss the
following concepts. The self-information of the
event {X ji = x} is defined as I(x) = − log pX ji(x)
(Shannon, 1948; Gallager, 1968). The average of

the self-information is the entropy of the random
variable X ji, given in Equation (2).

H(X ji) = E[I(X ji)] =− ∑
x∈S ji

pX ji(x) log pX ji(x)

(2)
In the same way, we define the non-negative, inte-
ger random variable Yji, which represents the ob-
served data rate flowing into a device j generated
by a device i. Yji also assume values in S ji and its
distribution is defined as:

P[Yji = y] , qY ji(y), y ∈ S ji.

Using previous definitions, we can calculate the
relative entropy described in Equation (3), which
stands for the Kullback-Leibler (Kullback, 1959;
Principe, 2010) divergence, a type of “distance”
between two distributions.

D(p||q) = ∑
x∈S ji

pX ji(x) log
pX ji(x)
qY ji(x)

(3)

Therefore, pX ji(x) is the estimated distribution of
the data rate received by j sent by i. The qY ji(x)
is also the distribution of the respective data rate,
but is the actually observed during data transmis-
sion. As qY ji(x) approximates pX ji(x) in Equa-
tion 3, the relative entropy (“distance”) D(p||q)
decreases. So, based on previous conclusions, we
model data rate behavior when the observed dis-
tribution differs from the true (estimated) distri-
bution, and adjust the trust of a specific device.
In order to capture the essence of the divergence
concept and bring it into the context of trust calcu-
lation, we define the component C2 with the fol-
lowing strategy:
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• if the obtained divergence value D(p||q) is less
than 1, then the calculated trust value follows
the formula:

C2 = 1.0−D(p||q)

• for divergence values D(p||q) greater than 1,
the calculated trust value follows the formula:

C2 =−0.5+
(

1
D(p||q)

)
The rationale behind such a strategy is to assign
greater trust values to devices which present di-
vergence values below 1 and penalize others that
exceed 1. Divergence values below 1 (close to
zero) indicate a ”proximity” of the distributions
(little divergence), or even, little information gain
(mutual information close to zero, little reduction
in uncertainty about a random variable when ob-
serving another) (Principe, 2010; Gallager, 1968).

3. IoT is a highly dynamic and opportunistic envi-
ronment. Devices constantly move around, some-
times over long distances. As a device is not able
to know where the peering device moved to, or
which networks it has joined in, or which peo-
ple had access to it, so maintaining an unchanged
trust value over time will not effectively represent
how much the device is trustworthy. That is, since
the context in which the interactions take place is
prone to change, it is necessary to have an expira-
tion of the trust value from the moment the com-
munication ends. A possible analogy is the case
of a web service session that expires if there is no
user activity after a while, making it necessary to
start a new session. Hence, for the third compo-
nent, we considered a temporal decay that works
like a timeout by decreasing the trust value from
the moment devices stop communicating. When
the trust value falls below a predefined threshold,
the devices will need to restart the trust establish-
ment process, i.e., the devices will need to obtain
a minimum trust from blockchain again. In our
model we consider a proportional temporal decay
(C3) as described in Equation (4).

C3 = T R ji×d (4)

where d is the decay factor.

The trust calculation is updated as the data rate
samples from the devices are collected and the com-
munication between them evolves over time. Each
device recalculates its trust in other peering devices
based on the respective current calculated trust. To do
so, the device considers the following cases:

1. If the trust value is below the defined threshold,
then the new trust value is calculated using the
High Level component according to the following
formula (Equation 5):

T Rupdated
ji = T Rcurrent

ji +C1 (5)

2. If the current trust value is above the related
threshold, then the updated trust value is calcu-
lated through the Low Level component accord-
ing to Equation 6:

T Rupdated
ji = T Rcurrent

ji +C2 (6)

3. Finally, in the case where there is no communi-
cation, then the temporal decay component takes
effect, according to Equation 7:

T Rupdated
ji = T Rcurrent

ji −C3 (7)

5 EXPERIMENTAL EVALUATION
AND DISCUSSION

In this section, we evaluate the potential of our ap-
proach to translate network data rate behavior of
IoT devices into a meaningful trust metric. We per-
form experiments using real traces obtained from the
dataset found in (Sivanathan et al., 2017) to validate
our approach with data coming from a real IoT appli-
cation. All dynamism that is typical of such a context
is reflected into traces. For example, the connectiv-
ity disruption due to mobility causes zero data to be
received by a device.

Traces from a smart-campus environment com-
pose the dataset in (Sivanathan et al., 2017) with over
20 IoT devices, including cameras, smart lights, activ-
ity sensors, and health-monitors. These traces include
raw packets and flow information, annotated with spe-
cific device attributes, over a period of 3 weeks. In our
experiments, we consider the period of one day of the
dataset and extract the data rate in bytes/s from flows
for each pair of devices according to the tuple (Source
IP, Destination IP) by summing the amount of bytes
transmitted in one second. During the experiments,
we used the data rate of some of those devices, such
as smart lights and activity sensors, considering a sce-
nario of smart city IoT application. In such scenario,
interactions between devices may take place in order
to accomplish cooperative tasks, such as a network of
drones that cooperate to expand communication over
an area of a disaster. With this, we envision that our
approach can detect changes in data rate pattern and
adjust the trust in the respective IoT device correctly
(by increasing or penalizing it).
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We run experiments considering the data rate be-
tween any two devices identified inside the dataset
through their respective flows. Throughout the text,
we use device i and device j to refer to those devices,
where “devices i” denotes the devices sending data to
“devices j” (receivers). The experiments consist in
playing data rate values obtained from the dataset and
calculating the trust metric according to Equations 5,
6, and 7. Relevant assumptions regarding the imple-
mentation should be highlighted:

• We consider a sliding window with size of 600
seconds to compose the data rate distribution esti-
mation;

• For the sample distribution of the data rate,
following the definitions presented in Section
4, we compute the relative frequencies of data
rate considering ∆ = 10000 and we simplified
the Rmax

ji = 100 KBps for all devices, therefore
S ji = [0,10KBps,20KBps, ...,100KBps];

• The value for the estimated data rate, used to
compare with the value for the actually received
data rate, is calculated using a Kalman Filter with
mean = 0 and covariance = 1, since it closely
tracks the received data rate and does not require
too many resources;

• When the communication is established for the
first time between two devices, only the compo-
nent at the High Level (application-based) actu-
ates, obtaining the reputation of the device in the
community;

• When the received data rate is greater than zero,
only the Low Level component (network-based)
actuates to change the trust value;

• When there is no data rate, only the temporal com-
ponent (also bellowing to the Low Level) actuates
by constantly decreasing the trust value according
to a predefined rate (e.g., −0.1 trust/s).

We chose to obtain the initial trust values from the
High Level synthetically from a Gaussian distribution
with parameters µ = 1 and σ2 = 1. The initial trust
values are provided by the blockchain (High Level)
whenever a device makes a trust request. Queries to
the blockchain are made in two situations: in the be-
ginning of a new communication; and when the trust
value drops below the established threshold.

Our approach is aware of resource consumption
and only requires sufficient memory to keep the data
rate history of peering devices. The size of the time
window of the data rate history might depend on
which granularity is desired (defined by the applica-
tion). The larger the window, the longer the data rate
history and, consequently, more memory will be used.

We vary the number of pairs of devices up to 4
pairs (total of 8 devices), each pair with a different
data rate pattern for the respective sender device, as
it can be seen in Figure 4. Devices 1 and 2 are la-
beled as licit sender devices with data rate patterns as
estimated, while devices 3 and 4 are labeled as ma-
licious devices with distribution of data rate different
from the estimated. Figure 5 depicts the respective
calculated trust values for each data rate pattern pre-
viously presented in Figure 4. For devices 1 and 2,
the trust values in the first seconds rise from zero trust
to the minimum trust set at 0.8 according to the val-
ues obtained from the High Level (Figure 6). The
Low Level starts taking place as the trust value sur-
passed the established threshold, which allows the de-
vices to communicate. Meanwhile, neither device 3
nor 4 could surpass the threshold, which indeed pro-
tects the other devices (and consequently the network)
from these malicious devices, since their communica-
tion is not allowed in such a situation. We emphasize
that devices are only allowed to establish communi-
cations when their respective trust values are above
the predefined minimum trust (threshold). Therefore,
our approach indeed provides IoT applications with
more security by protecting licit devices from mali-
cious ones. Table 1 summarizes the parameters used
in the experiment.

The trust values obtained by the High Level from
the computation of Equation 5 is illustrated in Fig-
ure 6. Figure 7 depicts the trust values calculated by
the Low Level from the Equation 6. The behavior
of each component is depicted for each device in the
experiment. In Figure 6, we see the queries to the
High Level to obtain the initial trust values when they
are below the threshold. Again, this means the High
Level is queried only when the Low Level cannot be
applied. The opposite occurs for the Low Level, as it
can be seen in Figure 7. The relative entropy score is
computed by the receiver device when the trust values

Table 1: Parameter setup of the experiment.

Parameter Value
Number of samples 21600
Number of IoT devices 8 (4 pairs); 60 (30 pairs)
Sliding window size 600 s
Fraction of malicious
devices 10%, 50%, 90%

High Level component N(1,1)
Trust threshold 0.8
Temporal component - 0.1 trust/s

Estimated data rate Kalman Filter,
mean = 0, cov = 1

Size of the interval that
contains a sample (∆) 10000

Maximum data rate (Rmax
ji ) 100 KBps

Number of intervals 10
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Figure 4: Traces from dataset (Sivanathan et al., 2017) for each sender device i. The first two graphs (devices 1 and 2) are
traces from licit devices, while the last two graphs (devices 3 and 4) come from malicious devices. The data rate samples are
given over a period of 21600 seconds (6 hours).

Figure 5: Calculated trust over time for each device according to the respective data rate patterns shown in Figure 4.

Figure 6: Blockchain score at the High Level when queried by each receiver device. Notice that C1 score is only queried in
cases where trust values of the sender device remain below the threshold.

Figure 7: Relative entropy score at the Low Level computed by each receiver device. Notice that C2 score is only computed
in cases where trust values remain above the threshold.

are above the threshold and when the devices are ac-
tually communicating, which means there is data be-
ing transferred. For example, for device 2, the High
Level presents values only in the beginning when the
devices start to establish connectivity, then the Low
Level takes place and keeps active til the end of the
experiment since the trust values remain above the
threshold. On the other hand, for device 4 (labeled as
malicious) the High Level is constantly queried and
the Low Level only returns negative values (penalize
the trust value) since there is no data to send.

To observe if our approach is working properly,
we analyze the behavior of generated trust values
when the number of malicious devices in the network
increases. As our approach only allows the communi-
cation of devices that present a minimum trust value,
we calculate the time that such devices keep on com-
municating. This way, we define the contact time
metric according to the following equations. Let NW
(Equation 8) be a binary function that assumes 1 (one)
when a device i wants to transmit to the device j, i.e.,
the observed data rate is positive; or 0 (zero) other-

Figure 8: Histogram of contact time over the number of
pairs of devices.

wise.

NW =

{
1, if y > 0, y ∈ S ji (cf. Section 4)
0, otherwise

(8)
Let also NT (Equation 9) be another binary func-
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tion that assumes 1 (one) when transmission is al-
lowed, i.e., the calculated trust value T R ji is greater
than or equal to the established threshold; or 0 (zero)
otherwise.

NT =

{
1, if T R ji > threshold
0, otherwise

(9)

Then, we define the contact time as the sum de-
scribed in Equation 10, with NS as the number of data
rate samples in the experiment. We assume that at
least one device will present intention to transmit, i.e,
y > 0, hence the denominator in Equation 10 is al-
ways greater than zero.

ContactTime =

NS
∑

k=1
NTk

NS
∑

k=1
NWk

,
NS

∑
k=1

NWk > 0 (10)

Therefore, the contact time is the fraction of time
during which the trust in a device remains above a
certain threshold during the experiment. During such
time, devices are allowed to communicate (establish
contact). Otherwise, when trust values fall below the
threshold, there is no more contact between devices.
The threshold depends on the application, which can
accept lower trust values (less restrict) or only higher
trust values (more restrict).

In Figure 8 we show the average contact time for
one pair up to four pairs of devices. During the first
two sets of experiments (one and two pairs), only licit
devices are considered, so the contact time remains
high. For the following sets, with 3 and 4 pairs, we
see that the average contact time reduces, which con-
firms that the introduction of malicious devices had an
impact on the contact time, and also reveals the effec-
tiveness of the trust approach in containing malicious
devices on the network.

We also analyzed the scalability and the stability
of our approach, considering a configuration with nu-
merous devices according to Table 1. We vary the
number of pairs from 1 to 30 and, with 30 pairs of
devices, i.e., 60 devices in total, we obtained a con-
tact time of 0.84 for a network configuration with
10% of malicious devices. With 50% of malicious
devices, we obtained 0.73 of contact time and 0.58
with 90% of malicious devices. The higher the rate of
malicious devices, the shorter the contact time, which
means that such malicious devices are not being able
to communicate. This confirms that our approach pre-
vents potential security attacks from being successful.
Figure 9 illustrates the contact time according to the
number of pairs and the rate of malicious devices.

Figure 9: Contact time variation according to the number of
pairs of devices and the rate of malicious devices.

We calculate performance metrics for the case of
10% of malicious devices in the network and obtained
0.84 of accuracy, with precision of 0.94, and 0.88 of
recall. With 50% of malicious devices, we obtained
0.70 of accuracy, 0.67 of precision, and 0.89 of re-
call. With 90% of malicious devices we obtained
0.5 of accuracy, 0.15 of precision, and 0.88 of recall.
The accuracy and precision drop with the increase in
the number of malicious devices, given that we focus
on classifying licit devices and not malicious ones.
Therefore, licit samples become rarer, which reduces
the number of true positives and false negatives. De-
spite the variations presented in accuracy and preci-
sion, the recall remained stable. Table 2 resumes all
performance metrics.

Table 2: Performance metrics with different percentages of
malicious devices.

% of malicious
devices Accuracy Precision Recall

10% 0.84 0.94 0.88
50% 0.7 0.67 0.89
90% 0.5 0.15 0.88

6 CONCLUDING REMARKS AND
FUTURE WORK

In this paper, we presented a mathematical model
to define trust in the context of IoT. We proposed a
two-level approach to model trust aspects, enabling
IoT devices to infer trust among themselves. We
mixed characteristics of Low Level (network perspec-
tive) and High Level (application perspective) to com-
pound a meaningful trust metric capable of capturing
data rate behavior changes.

With results obtained using real datasets, the Low
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Level behaves according to the expectations, even in
extreme scenarios caused by spikes of data rate. By
using data rate distribution, it was possible to capture
the essence of traffic, which makes the approach ro-
bust. Furthermore, since the approach has two-levels,
computing a trust value not only based on the network
aspects, but also on the application aspects offered by
the High Level component, it is very difficult for a
malicious device to tamper it considering the inherent
characteristics of blockchain. Therefore, we show the
effectiveness of our approach in (i) relying on repu-
tation values provided by the High Level component
when the devices do not know each other or with not
sufficient acquired trust value, and (ii) in capturing
network behavior changes, adjusting trust according
to that, and protecting the licit devices from malicious
ones.

In the future, we plan to extend this work with
Artificial Intelligence to improve the learning of new
traffic behaviors IoT devices might present. We also
envision a real deployment considering devices vir-
tualization with digital twins in a Multi-access Edge
Computing context to provide results from a real de-
ployment.

ACKNOWLEDGMENT

We would like to acknowledge the support from
Fundação de Amparo à Pesquisa do Estado do
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